DC ElementWertSprache
dc.contributor.authorAndersen, Jakob Smedegaard-
dc.contributor.authorZukunft, Olaf-
dc.date.accessioned2024-03-04T13:56:21Z-
dc.date.available2024-03-04T13:56:21Z-
dc.date.issued2023-
dc.identifier.isbn978-989-758-623-1en_US
dc.identifier.issn2184-433Xen_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14988-
dc.description.abstractTraining data is typically the bottleneck of supervised machine learning applications, heavily relying on cost-intensive human annotations. Active Learning proposes an interactive framework to efficiently spend human efforts in the training data generation process. However, re-training state-of-the-art text classifiers is highly computationally intensive, leading to long training cycles that cause annoying interruptions to humans in the loop. To enhance the applicability of Active Learning, we investigate low-budget real-time Active Learning via Proxy-based data selection in the domain of text classification. We aim to enable fast interactive cycles within a minimal labelling effort while exploiting the performance of state-of-the-art text classifiers. Our results show that Proxy-based Active Learning can increase the F1-score of a lightweight classifier compared to a traditional budget Active Learning approach up to ~19%. Our novel Proxy-based Active Learning approach can be carried out time-efficiently, requiring less than 1 second for each learning iteration.en
dc.language.isoenen_US
dc.publisherScitePressen_US
dc.subjectText Classificationen_US
dc.subjectActive Learningen_US
dc.subjectCost-Sensitive Learningen_US
dc.subject.ddc004: Informatiken_US
dc.titleTowards low-budget real-time active learning for text classification via proxy-based data selectionen
dc.typeinProceedingsen_US
dc.relation.conferenceInternational Conference on Agents and Artificial Intelligence 2023en_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorRocha, Ana Paula-
local.contributorPerson.editorSteels, Luc-
local.contributorPerson.editorHerik, Jaap-
tuhh.container.endpage33en_US
tuhh.container.startpage25en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publisher.doi10.5220/0011606000003393-
tuhh.publisher.urlhttps://www.scitepress.org/Papers/2023/116060/116060.pdf-
tuhh.relation.ispartofseriesProceedings of the 15th International Conference on Agents and Artificial Intelligenceen_US
tuhh.relation.ispartofseriesnumber3: ICAARTen_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.seriesrefProceedings of the 15th International Conference on Agents and Artificial Intelligence;3: ICAART-
item.tuhhseriesidProceedings of the 15th International Conference on Agents and Artificial Intelligence-
item.creatorGNDAndersen, Jakob Smedegaard-
item.creatorGNDZukunft, Olaf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidAndersen, Jakob Smedegaard-
item.creatorOrcidZukunft, Olaf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0001-8606-9743-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

29
checked on 26.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons