DC ElementWertSprache
dc.contributor.authorAndersen, Jakob Smedegaard-
dc.date.accessioned2024-03-04T14:13:23Z-
dc.date.available2024-03-04T14:13:23Z-
dc.date.issued2023-
dc.identifier.isbn978-989-758-623-1en_US
dc.identifier.issn2184-433Xen_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14989-
dc.description.abstractThe aim of this study is to provide an overview of human-in-the-loop text classification. Automated text classification faces several challenges that negatively affect its applicability in real-world domains. General obstacles are a lack of labelled examples, limited held-out accuracy, missing user trust, run-time constraints, low data quality and natural fuzziness. Human-in-the-loop is an emerging paradigm to continuously support machine processing, i.e. text classification, with prior human knowledge, aiming to overcome the limitations of purely artificial processing. In this survey, we review current challenges of pure automated text classifiers and outline how a human-in-the-loop can overcome these obstacles. We focus on end-to-end text classification and feedback of domain-experts, which do not process technical knowledge about the algorithms used. Further, we discuss common techniques to guide human attention and efforts within the text classification process.en
dc.language.isoenen_US
dc.publisherScitePressen_US
dc.subjectText Classificationen_US
dc.subjectHuman-in-the-Loopen_US
dc.subjectHybrid Intelligent Systemsen_US
dc.subject.ddc004: Informatiken_US
dc.titleWhy do we need domain-experts for end-to-end text classification? : an overviewen
dc.typeinProceedingsen_US
dc.relation.conferenceInternational Conference on Agents and Artificial Intelligence 2023en_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorRocha, Ana Paula-
local.contributorPerson.editorSteels, Luc-
local.contributorPerson.editorHerik, Jaap-
tuhh.container.endpage24en_US
tuhh.container.startpage17en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publisher.doi10.5220/0011605900003393-
tuhh.publisher.urlhttps://www.scitepress.org/Papers/2023/116059/116059.pdf-
tuhh.relation.ispartofseriesProceedings of the 15th International Conference on Agents and Artificial Intelligenceen_US
tuhh.relation.ispartofseriesnumber3: ICAARTen_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.seriesrefProceedings of the 15th International Conference on Agents and Artificial Intelligence;3: ICAART-
item.tuhhseriesidProceedings of the 15th International Conference on Agents and Artificial Intelligence-
item.creatorGNDAndersen, Jakob Smedegaard-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidAndersen, Jakob Smedegaard-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0001-8606-9743-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

65
checked on 26.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons