Verlagslink: https://www.scitepress.org/Papers/2023/116059/116059.pdf
Verlagslink DOI: 10.5220/0011605900003393
Titel: Why do we need domain-experts for end-to-end text classification? : an overview
Sprache: Englisch
Autorenschaft: Andersen, Jakob Smedegaard  
Herausgeber*In: Rocha, Ana Paula 
Steels, Luc 
Herik, Jaap 
Schlagwörter: Text Classification; Human-in-the-Loop; Hybrid Intelligent Systems
Erscheinungsdatum: 2023
Verlag: ScitePress
Teil der Schriftenreihe: Proceedings of the 15th International Conference on Agents and Artificial Intelligence 
Bandangabe: 3: ICAART
Anfangsseite: 17
Endseite: 24
Konferenz: International Conference on Agents and Artificial Intelligence 2023 
Zusammenfassung: 
The aim of this study is to provide an overview of human-in-the-loop text classification. Automated text classification faces several challenges that negatively affect its applicability in real-world domains. General obstacles are a lack of labelled examples, limited held-out accuracy, missing user trust, run-time constraints, low data quality and natural fuzziness. Human-in-the-loop is an emerging paradigm to continuously support machine processing, i.e. text classification, with prior human knowledge, aiming to overcome the limitations of purely artificial processing. In this survey, we review current challenges of pure automated text classifiers and outline how a human-in-the-loop can overcome these obstacles. We focus on end-to-end text classification and feedback of domain-experts, which do not process technical knowledge about the algorithms used. Further, we discuss common techniques to guide human attention and efforts within the text classification process.
URI: http://hdl.handle.net/20.500.12738/14989
ISBN: 978-989-758-623-1
ISSN: 2184-433X
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Fakultät Technik und Informatik 
Department Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

65
checked on 26.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons