DC FieldValueLanguage
dc.contributor.authorAndersen, Jakob Smedegaard-
dc.contributor.authorMaalej, Walid-
dc.date.accessioned2024-03-04T14:25:03Z-
dc.date.available2024-03-04T14:25:03Z-
dc.date.issued2022-
dc.identifier.isbn978-1-955917-25-4en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14990-
dc.description.abstractTo maximize the accuracy and increase the overall acceptance of text classifiers, we propose a framework for the efficient, in-operation moderation of classifiers’ output. Our framework focuses on use cases in which F1-scores of modern Neural Networks classifiers (ca. 90%) are still inapplicable in practice. We suggest a semi-automated approach that uses prediction uncertainties to pass unconfident, probably incorrect classifications to human moderators. To minimize the workload, we limit the human moderated data to the point where the accuracy gains saturate and further human effort does not lead to substantial improvements. A series of benchmarking experiments based on three different datasets and three state-of-the-art classifiers show that our framework can improve the classification F1-scores by 5.1 to 11.2% (up to approx. 98 to 99%), while reducing the moderation load up to 73.3% compared to a random moderation.en
dc.language.isoenen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.subject.ddc004: Informatiken_US
dc.titleEfficient, uncertainty-based moderation of neural networks text classifiersen
dc.typeinProceedingsen_US
dc.relation.conferenceAssociation for Computational Linguistics. Annual Meeting 2022en_US
dc.description.versionPeerRevieweden_US
local.contributorCorporate.editorAssociation for Computational Linguistics-
local.contributorPerson.editorMuresan, Smaranda-
local.contributorPerson.editorNakov, Preslav-
local.contributorPerson.editorVillavicencio, Aline-
tuhh.container.endpage1546en_US
tuhh.container.startpage1536en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publisher.doi10.18653/v1/2022.findings-acl.121-
tuhh.relation.ispartofseriesFindings of the Association for Computational Linguisticsen_US
tuhh.relation.ispartofseriesnumber2022en_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.book.title60th Annual Meeting of the Association for Computational Linguistics - Findings of ACL 2022 : May 22-27, 2022 : ACL 2022-
item.seriesrefFindings of the Association for Computational Linguistics;2022-
item.tuhhseriesidFindings of the Association for Computational Linguistics-
item.creatorGNDAndersen, Jakob Smedegaard-
item.creatorGNDMaalej, Walid-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidAndersen, Jakob Smedegaard-
item.creatorOrcidMaalej, Walid-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0001-8606-9743-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

49
checked on Nov 26, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons