Verlagslink: http://www.fzt.haw-hamburg.de/pers/Scholz/PAHMIR/GERDES-2017_DecisionTreesForA320AirConditioning_J-NDT-CM.pdf
http://PAHMIR.ProfScholz.de
Verlagslink DOI: 10.1784/insi.2017.59.8.424
Titel: Genetic Algorithms and Decision Trees for Condition Monitoring and Prognosis of A320 Aircraft Air Conditioning
Sprache: Englisch
Autorenschaft: Gerdes, Mike 
Galar, Diego 
Scholz, Dieter  
Erscheinungsdatum: Aug-2017
Verlag: The British Institute of Non-Destructive Testing
Zeitschrift oder Schriftenreihe: Insight : non-destructive testing and condition monitoring ; the journal of the British Institute of Non-Destructive Testing 
Zeitschriftenband: 59
Zeitschriftenausgabe: 8
Anfangsseite: 424
Endseite: 433
Zusammenfassung: 
Unscheduled maintenance is a large cost driver for airlines, but condition monitoring and prognosis can reduce the number of unscheduled maintenance actions. The paper shows condition monitoring can be introduced into most system by adopting a data-driven approach and using existing data sources. The goal is to forecast the remaining useful life (RUL) of a system based on various sensor inputs. We use decision trees to learn the characteristics of a system. The data for the decision tree training and classification are processed by a generic parametric signal analysis. To obtain the best classification results for the decision tree, the parameters are optimized by a genetic algorithm. A forest of three different decision trees with different signal analysis parameters is used as classifier. The proposed method is validated with data from an A320 aircraft from ETIHAD Airways. Validation shows condition monitoring can classify the sample data into ten predetermined categories, representing the total useful life (TUL) in 10 percent steps. This is used to predict the RUL. There are 350 false classifications out of 850 samples. Noise reduction reduces the outliers to nearly zero, making it possible to correctly predict condition. It is also possible to use the classification output to detect a maintenance action in the validation data.
URI: http://hdl.handle.net/20.500.12738/1516
ISSN: 1354-2575
Einrichtung: Department Fahrzeugtechnik und Flugzeugbau 
Fakultät Technik und Informatik 
Forschungsgruppe Flugzeugentwurf und -systeme (AERO) 
Dokumenttyp: Zeitschriftenbeitrag
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

94
checked on 26.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.