DC FieldValueLanguage
dc.contributor.authorGerdes, Mike-
dc.contributor.authorGalar, Diego-
dc.contributor.authorScholz, Dieter-
dc.date.accessioned2020-08-26T09:18:04Z-
dc.date.available2020-08-26T09:18:04Z-
dc.date.issued2017-08-
dc.identifier.issn1354-2575en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/1516-
dc.description.abstractUnscheduled maintenance is a large cost driver for airlines, but condition monitoring and prognosis can reduce the number of unscheduled maintenance actions. The paper shows condition monitoring can be introduced into most system by adopting a data-driven approach and using existing data sources. The goal is to forecast the remaining useful life (RUL) of a system based on various sensor inputs. We use decision trees to learn the characteristics of a system. The data for the decision tree training and classification are processed by a generic parametric signal analysis. To obtain the best classification results for the decision tree, the parameters are optimized by a genetic algorithm. A forest of three different decision trees with different signal analysis parameters is used as classifier. The proposed method is validated with data from an A320 aircraft from ETIHAD Airways. Validation shows condition monitoring can classify the sample data into ten predetermined categories, representing the total useful life (TUL) in 10 percent steps. This is used to predict the RUL. There are 350 false classifications out of 850 samples. Noise reduction reduces the outliers to nearly zero, making it possible to correctly predict condition. It is also possible to use the classification output to detect a maintenance action in the validation data.en
dc.language.isoenen_US
dc.publisherThe British Institute of Non-Destructive Testingen_US
dc.relation.ispartofInsight : non-destructive testing and condition monitoring ; the journal of the British Institute of Non-Destructive Testingen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleGenetic Algorithms and Decision Trees for Condition Monitoring and Prognosis of A320 Aircraft Air Conditioningen
dc.typeArticleen_US
tuhh.container.endpage433en_US
tuhh.container.issue8en_US
tuhh.container.startpage424en_US
tuhh.container.volume59en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Fahrzeugtechnik und Flugzeugbauen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteForschungsgruppe Flugzeugentwurf und -systeme (AERO)en_US
tuhh.publisher.doi10.1784/insi.2017.59.8.424-
tuhh.publisher.urlhttp://www.fzt.haw-hamburg.de/pers/Scholz/PAHMIR/GERDES-2017_DecisionTreesForA320AirConditioning_J-NDT-CM.pdf-
tuhh.publisher.urlhttp://PAHMIR.ProfScholz.de-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.creatorGNDGerdes, Mike-
item.creatorGNDGalar, Diego-
item.creatorGNDScholz, Dieter-
item.fulltextNo Fulltext-
item.creatorOrcidGerdes, Mike-
item.creatorOrcidGalar, Diego-
item.creatorOrcidScholz, Dieter-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypeArticle-
crisitem.author.deptDepartment Fahrzeugtechnik und Flugzeugbau-
crisitem.author.orcid0000-0002-8188-7269-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

94
checked on Dec 27, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.