DC Element | Wert | Sprache |
---|---|---|
dc.contributor.advisor | Dahlkemper, Jörg | - |
dc.contributor.author | Perkovic, Mike | - |
dc.date.accessioned | 2024-03-22T14:31:16Z | - |
dc.date.available | 2024-03-22T14:31:16Z | - |
dc.date.created | 2022-01-03 | - |
dc.date.issued | 2024-03-22 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12738/15307 | - |
dc.description.abstract | Diese Arbeit befasst sich mit der Frage, welche Methode dafür geeignet ist, den Schneebedeckungsgrad auf Bildern optimal zu erkennen. Zur Realisierung wird Deep Learning in Kombination mit Faltungsnetzen angewendet. Es werden verschiedene Bilddatensätze und Netze verwendet wie VGG16, Xception und DenseNet201. | de |
dc.description.abstract | This thesis deals with the question of which method is suitable for optimally detecting the degree of snow cover on images. For the realization, Deep Learning in combination with convolutional networks is applied. Different image datasets and networks are used, such as VGG16, Xception and DenseNet201. | en |
dc.language.iso | de | en_US |
dc.subject | Kamera | en_US |
dc.subject | Wetter | en_US |
dc.subject | Schnee | en_US |
dc.subject | Bedeckungsgrad | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Künstliches neuronales Netz | en_US |
dc.subject | KNN | en_US |
dc.subject | Erkennung | en_US |
dc.subject | Algorithmus | en_US |
dc.subject | Open Source | en_US |
dc.subject | Python | en_US |
dc.subject | OpenCV | en_US |
dc.subject | TensorFlow | en_US |
dc.subject | Keras | en_US |
dc.subject | Neuronales Faltungsnetz | en_US |
dc.subject | CNN | en_US |
dc.subject | Camera | en_US |
dc.subject | Weather | en_US |
dc.subject | Snow | en_US |
dc.subject | Coverage | en_US |
dc.subject | Artificial Neural Network | en_US |
dc.subject | ANN | en_US |
dc.subject | Recognition | en_US |
dc.subject | Algorithm | en_US |
dc.subject | Convolutional Neural Network | en_US |
dc.subject.ddc | 004: Informatik | en_US |
dc.title | Methodenvergleich zum Einsatz von Deep Learning zur kamerabasierten Ermittlung des Schneebedeckungsgrades | de |
dc.type | Thesis | en_US |
openaire.rights | info:eu-repo/semantics/openAccess | en_US |
thesis.grantor.department | Fakultät Technik und Informatik | en_US |
thesis.grantor.department | Department Informations- und Elektrotechnik | en_US |
thesis.grantor.universityOrInstitution | Hochschule für Angewandte Wissenschaften Hamburg | en_US |
tuhh.contributor.referee | Meisel, Andreas | - |
tuhh.identifier.urn | urn:nbn:de:gbv:18302-reposit-183001 | - |
tuhh.oai.show | true | en_US |
tuhh.publication.institute | Fakultät Technik und Informatik | en_US |
tuhh.publication.institute | Department Informations- und Elektrotechnik | en_US |
tuhh.type.opus | Masterarbeit | - |
dc.type.casrai | Supervised Student Publication | - |
dc.type.dini | masterThesis | - |
dc.type.driver | masterThesis | - |
dc.type.status | info:eu-repo/semantics/publishedVersion | en_US |
dc.type.thesis | masterThesis | en_US |
dcterms.DCMIType | Text | - |
tuhh.dnb.status | domain | en_US |
item.advisorGND | Dahlkemper, Jörg | - |
item.creatorGND | Perkovic, Mike | - |
item.languageiso639-1 | de | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_46ec | - |
item.creatorOrcid | Perkovic, Mike | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.openairetype | Thesis | - |
Enthalten in den Sammlungen: | Theses |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
MA_Methodenvergleich_Deep Learning_kamerabasierte Ermittlung_Schneebedeckungsgrad.pdf | 13.67 MB | Adobe PDF | Öffnen/Anzeigen |
Feedback zu diesem Datensatz
Export
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.