Volltextdatei(en) in REPOSIT vorhanden Open Access
DC ElementWertSprache
dc.contributor.advisorDahlkemper, Jörg-
dc.contributor.authorPerkovic, Mike-
dc.date.accessioned2024-03-22T14:31:16Z-
dc.date.available2024-03-22T14:31:16Z-
dc.date.created2022-01-03-
dc.date.issued2024-03-22-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/15307-
dc.description.abstractDiese Arbeit befasst sich mit der Frage, welche Methode dafür geeignet ist, den Schneebedeckungsgrad auf Bildern optimal zu erkennen. Zur Realisierung wird Deep Learning in Kombination mit Faltungsnetzen angewendet. Es werden verschiedene Bilddatensätze und Netze verwendet wie VGG16, Xception und DenseNet201.de
dc.description.abstractThis thesis deals with the question of which method is suitable for optimally detecting the degree of snow cover on images. For the realization, Deep Learning in combination with convolutional networks is applied. Different image datasets and networks are used, such as VGG16, Xception and DenseNet201.en
dc.language.isodeen_US
dc.subjectKameraen_US
dc.subjectWetteren_US
dc.subjectSchneeen_US
dc.subjectBedeckungsgraden_US
dc.subjectDeep Learningen_US
dc.subjectKünstliches neuronales Netzen_US
dc.subjectKNNen_US
dc.subjectErkennungen_US
dc.subjectAlgorithmusen_US
dc.subjectOpen Sourceen_US
dc.subjectPythonen_US
dc.subjectOpenCVen_US
dc.subjectTensorFlowen_US
dc.subjectKerasen_US
dc.subjectNeuronales Faltungsnetzen_US
dc.subjectCNNen_US
dc.subjectCameraen_US
dc.subjectWeatheren_US
dc.subjectSnowen_US
dc.subjectCoverageen_US
dc.subjectArtificial Neural Networken_US
dc.subjectANNen_US
dc.subjectRecognitionen_US
dc.subjectAlgorithmen_US
dc.subjectConvolutional Neural Networken_US
dc.subject.ddc004: Informatiken_US
dc.titleMethodenvergleich zum Einsatz von Deep Learning zur kamerabasierten Ermittlung des Schneebedeckungsgradesde
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentFakultät Technik und Informatiken_US
thesis.grantor.departmentDepartment Informations- und Elektrotechniken_US
thesis.grantor.universityOrInstitutionHochschule für Angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeMeisel, Andreas-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-183001-
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Informations- und Elektrotechniken_US
tuhh.type.opusMasterarbeit-
dc.type.casraiSupervised Student Publication-
dc.type.dinimasterThesis-
dc.type.drivermasterThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesismasterThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomainen_US
item.advisorGNDDahlkemper, Jörg-
item.creatorGNDPerkovic, Mike-
item.languageiso639-1de-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.creatorOrcidPerkovic, Mike-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeThesis-
Enthalten in den Sammlungen:Theses
Dateien zu dieser Ressource:
Zur Kurzanzeige

Seitenansichten

274
checked on 25.11.2024

Download(s)

111
checked on 25.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.