Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.advisorvon Luck, Kai-
dc.contributor.authorBraatz, Aaron-
dc.date.accessioned2024-04-03T09:49:13Z-
dc.date.available2024-04-03T09:49:13Z-
dc.date.created2022-05-04-
dc.date.issued2024-04-03-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/15400-
dc.description.abstractKlima- und Umweltschutz stehen zunehmend im Fokus der Öffentlichkeit. Die Politik reagiert darauf mit Gesetzen und Richtlinien, die von staatlichen Institutionen umgesetzt werden. Diese erfassen klima- und umweltrelevante Daten in hochspezialisierten Messeinrichtungen, die allerdings nur mit großen Abständen errichtet werden. Crowd-based Sensornetze bieten die Möglichkeit, ergänzend Messungen mit günstigeren Sensoren vorzunehmen. Diese Daten müssen für die weitere Verwendung aufbereitet werden, damit sie als Grundlage für Analysen und Vorhersagen genutzt werden können. In dieser Arbeit wird ein Analyseprozess vorgestellt, welcher es ermöglicht, günstige Sensoren nachträglich auf Basis von umliegenden Referenzstationen zu kalibrieren. Weiter wird räumliche Interpolation genutzt, um die ungleichmäßig verteilten Sensordaten zu einem einheitlichen Raster zu schätzen. Dieses Raster wird im letzten Schritt genutzt, um kurzfristige Prognosen für die Feinstaubentwicklung mittels eines ConvLSTM-Netzes zu erstellen.de
dc.description.abstractClimate and environmental protection are increasingly becoming the focus of public interest. Politicians are responding to this with laws and guidelines that are implemented by state institutions. These collect climate- and environment-relevant data in highly specialized measuring devices, which, however, are only set up at great distances from each other. Crowd-based sensor networks offer the possibility to perform complementary measurements with less expensive sensors. These data need to be processed for further use as a basis for analysis and prediction. In this paper, an analysis procedure is presented that allows subsequent calibration of low-cost sensors using surrounding reference stations. Furthermore, the unevenly distributed sensor data are estimated by spatial interpolation onto a uniform grid. This grid is used in the final step to generate short-term forecasts for particulate matter development using a ConvLSTM network.en
dc.language.isodeen_US
dc.subjectraumzeitliche Datenanlyseen_US
dc.subjectcrowd-based Sensornetzeen_US
dc.subjecträumliche Interpolationen_US
dc.subjectSensorkalibrierungen_US
dc.subjectDeep Learningen_US
dc.subjectConvLSTMen_US
dc.subjectspatiotemporal data analysisen_US
dc.subjectcrowd-based sensor networken_US
dc.subjectspatial interpolationen_US
dc.subjectsensor calibrationen_US
dc.subject.ddc004: Informatiken_US
dc.titleAnalyse und Prognose von Feinstaubdaten auf Basis von crowd-based Sensornetzen mit KI Verfahrende
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentDepartment Informatiken_US
thesis.grantor.universityOrInstitutionHochschule für Angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeSudeikat, Jan-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-183365-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.type.opusMasterarbeit-
dc.type.casraiSupervised Student Publication-
dc.type.dinimasterThesis-
dc.type.drivermasterThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesismasterThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomainen_US
item.advisorGNDvon Luck, Kai-
item.creatorGNDBraatz, Aaron-
item.languageiso639-1de-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.creatorOrcidBraatz, Aaron-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeThesis-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
MA_Analyse und Prognose von Feinstaubdaten_geschwärzt.pdf3.08 MBAdobe PDFView/Open
Show simple item record

Page view(s)

130
checked on Nov 25, 2024

Download(s)

79
checked on Nov 25, 2024

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.