DC ElementWertSprache
dc.contributor.authorHolme, H. Christian M.-
dc.contributor.authorRosenzweig, Sebastian-
dc.contributor.authorOng, Frank-
dc.contributor.authorWilke, Robin N.-
dc.contributor.authorLustig, Michael-
dc.contributor.authorUecker, Martin-
dc.date.accessioned2024-04-23T11:42:42Z-
dc.date.available2024-04-23T11:42:42Z-
dc.date.issued2019-02-28-
dc.identifier.issn2045-2322en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/15596-
dc.description.abstractRobustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging technique which simultaneously estimates coil profiles and image content in a relaxed forward model. Our method is robust against a wide class of data inconsistencies, minimizes imaging artifacts and is comparably fast, combining important advantages of many conceptually different state-of-the-art parallel imaging approaches. Depending on the experimental setting, data can be undersampled well below the Nyquist limit. Here, even high acceleration factors yield excellent imaging results while being robust to noise and the occurrence of phase singularities in the image domain, as we show on different data. Moreover, our method successfully reconstructs acquisitions with insufficient field-of-view. We further compare our approach to ESPIRiT and SAKE using spin-echo and gradient echo MRI data from the human head and knee. In addition, we show its applicability to non-Cartesian imaging on radial FLASH cardiac MRI data. Using theoretical considerations, we show that ENLIVE can be related to a low-rank formulation of blind multi-channel deconvolution, explaining why it inherently promotes low-rank solutions.en
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofScientific reportsen_US
dc.subject.ddc610: Medizinen_US
dc.titleENLIVE : an efficient nonlinear method for calibrationless and robust parallel imagingen
dc.typeArticleen_US
dc.description.versionPeerRevieweden_US
tuhh.container.volume9en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteGeorg-August-Universität Göttingenen_US
tuhh.publisher.doi10.1038/s41598-019-39888-7-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
local.comment.externalarticle number: 3034 (2019)en_US
item.creatorGNDHolme, H. Christian M.-
item.creatorGNDRosenzweig, Sebastian-
item.creatorGNDOng, Frank-
item.creatorGNDWilke, Robin N.-
item.creatorGNDLustig, Michael-
item.creatorGNDUecker, Martin-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidHolme, H. Christian M.-
item.creatorOrcidRosenzweig, Sebastian-
item.creatorOrcidOng, Frank-
item.creatorOrcidWilke, Robin N.-
item.creatorOrcidLustig, Michael-
item.creatorOrcidUecker, Martin-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.orcid0000-0002-9263-1904-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

48
checked on 23.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons