Volltextdatei(en) in REPOSIT vorhanden Open Access
DC ElementWertSprache
dc.contributor.advisorMüller, Christian-
dc.contributor.authorEl Marouk, Hassan-
dc.date.accessioned2024-05-03T06:15:57Z-
dc.date.available2024-05-03T06:15:57Z-
dc.date.created2023-02-28-
dc.date.issued2024-05-03-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/15681-
dc.description.abstractAufgrund der globalen Klimaveränderungen gewinnt die Nutzung von Brennstoffzellen als Energiequelle für Elektromotoren immer mehr an Bedeutung. Brennstoffzellen sind eine umweltfreundliche und effiziente Alternative zu Verbrennungsmotoren, da sie keine schädlichen Emissionen produzieren. Die Kernkomponenten der Brennstoffzellen sind Bipolarplatten, die aus Materialien wie Graphit, Titanlegierungen oder Edelstahl hergestellt werden können. Die Fertigung dieser Bipolarplatten ist jedoch aufgrund ihrer nutförmigen Strukturen, die die elektrochemische Reaktion ermöglichen, eine Herausforderung. Um die Effizienz der spanenden Bearbeitung dieser Funktionsgeometrien zu verbessern, werden Bauteile hergestellt, um die kritischen Bearbeitungsschritte zu ermitteln. Dies ermöglicht es, Potenziale und Grenzen der spanenden Bearbeitung zu identifizieren und zu optimieren, um eine wirtschaftliche Herstellung der Bipolarplatten zu erreichen. Die Optimierung der Fertigungstechnologie für Bipolarplatten ist nicht nur eine Herausforderung, sondern auch eine wichtige Maßnahme im Kampf gegen den Klimawandel. Durch die steigende Nachfrage nach Brennstoffzellen und Elektromotoren wird die Herstellung von Bipolarplatten mit spanenden Verfahren immer wichtiger. Eine verbesserte Fertigungstechnologie trägt nicht nur zur Reduzierung von Treibhausgasemissionen bei, sondern unterstützt auch die Entwicklung von nachhaltigen Energiequellen und trägt somit zur Bekämpfung des Klimawandels bei. Diese Arbeit befasst sich mit der Durchführung und an Bipolarplatten taugliche und nicht ganz so einfach zu zerspanende Materialien für PEM-Brennstoffzellen. Dabei liegt das Augenmerk auf schnelles und effizientes Herstellen der Flowfields mittels Fräsen, um eine mögliche wirtschaftlich reife Massenproduktion dieser Bipolarplatten zu realisieren. So kann als Ergebnis geliefert werden, dass durch Optimierungen an den Zerspanprozess, das Zerspanen durchaus mit der konventionellen Methode mithalten kann.de
dc.description.abstractDue to global climate change, the use of fuel cells as a power source for electric motors is becoming increasingly important. Fuel cells are an environmentally friendly and efficient alternative to combustion engines as they do not produce harmful emissions. The core components of fuel cells are bipolar plates, which can be made from materials such as graphite, titanium alloys, or stainless steel. However, manufacturing these bipolar plates is a challenge due to their groove-like structures that enable electrochemical reactions. To improve the efficiency of machining these functional geometries, parts are manufactured to identify critical machining steps. This enables the identification and optimization of potentials and limits of machining to achieve cost-effective manufacturing of bipolar plates. Optimizing the manufacturing technology for bipolar plates is not only a challenge, but also an important measure in the fight against climate change. With the increasing demand for fuel cells and electric motors, the production of bipolar plates using machining processes is becoming more important. Improved manufacturing technology not only contributes to reducing greenhouse gas emissions but also supports the development of sustainable energy sources and thus contributes to combating climate change. This work focuses on the implementation of suitable materials for PEM fuel cell bipolar plates that are not easy to machine. The goal is to quickly and efficiently produce flow fields using milling to realize a possible economically mature mass production of these bipolar plates. As a result of process optimization, it can be delivered that machining can keep up with the conventional method.en
dc.language.isodeen_US
dc.subjectBipolarplatteen_US
dc.subjectFlowfieldsen_US
dc.subjectFräsenen_US
dc.subjectWerkzeugverschleißen_US
dc.subjectNC-Programmierungen_US
dc.subjectBipolar Plateen_US
dc.subjectMillingen_US
dc.subjectTool Wearen_US
dc.subjectNC programmingen_US
dc.subject.ddc600: Techniken_US
dc.titleZerspanende Herstellung von Bipolarplatten-Prototypen für mobile PEM-Brennstoffzellende
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentFakultät Technik und Informatiken_US
thesis.grantor.departmentDepartment Maschinenbau und Produktionen_US
thesis.grantor.universityOrInstitutionHochschule für Angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeHänert, Thomas-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-185442-
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.type.opusBachelor Thesis-
dc.type.casraiSupervised Student Publication-
dc.type.dinibachelorThesis-
dc.type.driverbachelorThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesisbachelorThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomainen_US
item.advisorGNDMüller, Christian-
item.creatorGNDEl Marouk, Hassan-
item.languageiso639-1de-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.creatorOrcidEl Marouk, Hassan-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeThesis-
Enthalten in den Sammlungen:Theses
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
BA_Bipolarplatten-Prototypen_mobile Brennstoffzellen.pdf8.08 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

109
checked on 25.11.2024

Download(s)

121
checked on 25.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.