Volltextdatei(en) in REPOSIT vorhanden Open Access
Titel: Synthetisierung von Audiosignalen mithilfe Neuronaler Netze am Beispiel von Vogelgesang
Sprache: Deutsch
Autorenschaft: Lapok, Fabien 
Schlagwörter: Deep Learning; Neuronale Netze; GANs; Wasserstein-GANs; Vocoder; Audiosynthese; Synthese von Vogelgesang; Mel-Spektrogramme; Python; Pytorch; FID-Score; Audio synthesis; synthesis of bird songs; mel spectrograms
Erscheinungsdatum: 10-Mai-2024
Zusammenfassung: 
Das Ziel der vorliegenden Arbeit ist die Konzeption, Implementierung und Evaluation einer Architektur auf Basis Neuronaler Netze für die Synthese von Vogelgesang. Die hier entwickelte Architektur besteht aus zwei Neuronalen Netzen: einem Wasserstein-GAN, der Mel-Spektrogramme mit Vogelgesang erzeugt und einem für die Sprachsynthese vortrainierten Vocoder, der diese Mel-Spektrogramme in Audiosignal...

The goal of this paper is to design, implement, and evaluate a neural network-based architecture for bird song synthesis. The developed architecture consists of two neural networks: A Wasserstein GAN that generates mel spectrograms of bird song and a vocoder, pre-trained for speech synthesis, that converts these spectrograms into audio signals. In this context, Generative Adversarial Networks (GAN...
URI: http://hdl.handle.net/20.500.12738/15720
Einrichtung: Fakultät Technik und Informatik 
Department Informatik 
Dokumenttyp: Abschlussarbeit
Abschlussarbeitentyp: Masterarbeit
Hauptgutachter*in: Meisel, Andreas 
Gutachter*in der Arbeit: Tiedemann, Tim 
Enthalten in den Sammlungen:Theses

Dateien zu dieser Ressource:
Zur Langanzeige

Seitenansichten

200
checked on 07.04.2025

Download(s)

81
checked on 07.04.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.