DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Sharafi, Nahal | - |
dc.contributor.author | Martin, Christoph | - |
dc.contributor.author | Hallerberg, Sarah | - |
dc.date.accessioned | 2024-05-15T14:00:17Z | - |
dc.date.available | 2024-05-15T14:00:17Z | - |
dc.date.issued | 2024-04-30 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12738/15745 | - |
dc.description.abstract | Neural networks have become a widely adopted tool for tackling a variety of problems in machine learning and artificial intelligence. In this contribution we use the mathematical framework of local stability analysis to gain a deeper understanding of the learning dynamics of feed forward neural networks. Therefore, we derive equations for the tangent operator of the learning dynamics of three-layer networks learning regression tasks. The results are valid for an arbitrary numbers of nodes and arbitrary choices of activation functions. Applying the results to a network learning a regression task, we investigate numerically, how stability indicators relate to the final training-loss. Although the specific results vary with different choices of initial conditions and activation functions, we demonstrate that it is possible to predict the final training loss, by monitoring finite-time Lyapunov exponents during the training process. | en |
dc.language.iso | en | en_US |
dc.publisher | Arxiv.org | en_US |
dc.relation.ispartof | De.arxiv.org | en_US |
dc.subject.ddc | 600: Technik | en_US |
dc.title | On the weight dynamics of learning networks | en |
dc.type | Preprint | en_US |
dc.description.version | ReviewPending | en_US |
tuhh.oai.show | true | en_US |
tuhh.publication.institute | Fakultät Technik und Informatik | en_US |
tuhh.publication.institute | Department Maschinenbau und Produktion | en_US |
tuhh.publisher.doi | 10.48550/arXiv.2405.00743 | - |
tuhh.type.opus | Preprint (Vorabdruck) | - |
dc.type.casrai | Other | - |
dc.type.dini | preprint | - |
dc.type.driver | preprint | - |
dc.type.status | info:eu-repo/semantics/draft | en_US |
dcterms.DCMIType | Text | - |
item.creatorGND | Sharafi, Nahal | - |
item.creatorGND | Martin, Christoph | - |
item.creatorGND | Hallerberg, Sarah | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_816b | - |
item.creatorOrcid | Sharafi, Nahal | - |
item.creatorOrcid | Martin, Christoph | - |
item.creatorOrcid | Hallerberg, Sarah | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Preprint | - |
crisitem.author.dept | Department Maschinenbau und Produktion | - |
crisitem.author.dept | Department Maschinenbau und Produktion | - |
crisitem.author.dept | Department Maschinenbau und Produktion | - |
crisitem.author.parentorg | Fakultät Technik und Informatik | - |
crisitem.author.parentorg | Fakultät Technik und Informatik | - |
crisitem.author.parentorg | Fakultät Technik und Informatik | - |
Enthalten in den Sammlungen: | Publications without full text |
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.