DC ElementWertSprache
dc.contributor.authorSharafi, Nahal-
dc.contributor.authorMartin, Christoph-
dc.contributor.authorHallerberg, Sarah-
dc.date.accessioned2024-05-15T14:00:17Z-
dc.date.available2024-05-15T14:00:17Z-
dc.date.issued2024-04-30-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/15745-
dc.description.abstractNeural networks have become a widely adopted tool for tackling a variety of problems in machine learning and artificial intelligence. In this contribution we use the mathematical framework of local stability analysis to gain a deeper understanding of the learning dynamics of feed forward neural networks. Therefore, we derive equations for the tangent operator of the learning dynamics of three-layer networks learning regression tasks. The results are valid for an arbitrary numbers of nodes and arbitrary choices of activation functions. Applying the results to a network learning a regression task, we investigate numerically, how stability indicators relate to the final training-loss. Although the specific results vary with different choices of initial conditions and activation functions, we demonstrate that it is possible to predict the final training loss, by monitoring finite-time Lyapunov exponents during the training process.en
dc.language.isoenen_US
dc.publisherArxiv.orgen_US
dc.relation.ispartofDe.arxiv.orgen_US
dc.subject.ddc600: Techniken_US
dc.titleOn the weight dynamics of learning networksen
dc.typePreprinten_US
dc.description.versionReviewPendingen_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.publisher.doi10.48550/arXiv.2405.00743-
tuhh.type.opusPreprint (Vorabdruck)-
dc.type.casraiOther-
dc.type.dinipreprint-
dc.type.driverpreprint-
dc.type.statusinfo:eu-repo/semantics/draften_US
dcterms.DCMITypeText-
item.creatorGNDSharafi, Nahal-
item.creatorGNDMartin, Christoph-
item.creatorGNDHallerberg, Sarah-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.creatorOrcidSharafi, Nahal-
item.creatorOrcidMartin, Christoph-
item.creatorOrcidHallerberg, Sarah-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypePreprint-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

49
checked on 23.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.