Verlagslink DOI: 10.1109/ACCESS.2024.3396352
Titel: Linear state signal shaping explicit model predictive control using tensor decompositions
Sprache: Englisch
Autorenschaft: Cateriano Yáñez, Carlos 
Pangalos, Georg 
Meyer, Jan-Henrik 
Lichtenberg, Gerwald  
Sanchis Sáez, Javier 
Schlagwörter: Harmonic compensation; explicit model predictive control; active power filter; tensor decomposition
Erscheinungsdatum: 2-Mai-2024
Verlag: IEEE
Zeitschrift oder Schriftenreihe: IEEE access 
Zeitschriftenband: 12
Anfangsseite: 64427
Endseite: 64438
Zusammenfassung: 
Due to the increasing use of nonlinear loads in modern power systems, harmonic currents have become a more prominent problem for power quality. Typically, harmonic currents are compensated by using shunt active power filters. Recently, a novel constrained linear state signal shaping model predictive controller has been proposed for shunt active power filter control. However, due to the high computational requirements of online quadratic programming solvers, the real-time implementation of this solution is quite challenging. Therefore, the present work proposes the use of a linear state signal shaping explicit model predictive control formulation, such that the optimizations are done offline. However, the generated offline data introduces a large memory footprint, hindering real-time implementation. To break the curse of dimensionality, a tensor representation is proposed, which can be efficiently compressed via tensor decomposition methods. The proposed approach was tested in simulation and was able to provide good results. Due to the use of efficient tensor decomposition methods, a considerable reduction of the memory requirement could be achieved.
URI: http://hdl.handle.net/20.500.12738/15811
ISSN: 2169-3536
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Fakultät Life Sciences 
Department Medizintechnik 
Dokumenttyp: Zeitschriftenbeitrag
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

69
checked on 23.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons