DC ElementWertSprache
dc.contributor.authorCateriano Yáñez, Carlos-
dc.contributor.authorPangalos, Georg-
dc.contributor.authorMeyer, Jan-Henrik-
dc.contributor.authorLichtenberg, Gerwald-
dc.contributor.authorSanchis Sáez, Javier-
dc.date.accessioned2024-05-23T13:54:53Z-
dc.date.available2024-05-23T13:54:53Z-
dc.date.issued2024-05-02-
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/15811-
dc.description.abstractDue to the increasing use of nonlinear loads in modern power systems, harmonic currents have become a more prominent problem for power quality. Typically, harmonic currents are compensated by using shunt active power filters. Recently, a novel constrained linear state signal shaping model predictive controller has been proposed for shunt active power filter control. However, due to the high computational requirements of online quadratic programming solvers, the real-time implementation of this solution is quite challenging. Therefore, the present work proposes the use of a linear state signal shaping explicit model predictive control formulation, such that the optimizations are done offline. However, the generated offline data introduces a large memory footprint, hindering real-time implementation. To break the curse of dimensionality, a tensor representation is proposed, which can be efficiently compressed via tensor decomposition methods. The proposed approach was tested in simulation and was able to provide good results. Due to the use of efficient tensor decomposition methods, a considerable reduction of the memory requirement could be achieved.en
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE accessen_US
dc.subjectHarmonic compensationen_US
dc.subjectexplicit model predictive controlen_US
dc.subjectactive power filteren_US
dc.subjecttensor decompositionen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleLinear state signal shaping explicit model predictive control using tensor decompositionsen
dc.typeArticleen_US
dc.description.versionPeerRevieweden_US
tuhh.container.endpage64438en_US
tuhh.container.startpage64427en_US
tuhh.container.volume12en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publication.instituteDepartment Medizintechniken_US
tuhh.publisher.doi10.1109/ACCESS.2024.3396352-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.creatorGNDCateriano Yáñez, Carlos-
item.creatorGNDPangalos, Georg-
item.creatorGNDMeyer, Jan-Henrik-
item.creatorGNDLichtenberg, Gerwald-
item.creatorGNDSanchis Sáez, Javier-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidCateriano Yáñez, Carlos-
item.creatorOrcidPangalos, Georg-
item.creatorOrcidMeyer, Jan-Henrik-
item.creatorOrcidLichtenberg, Gerwald-
item.creatorOrcidSanchis Sáez, Javier-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptDepartment Medizintechnik-
crisitem.author.orcid0000-0001-6032-0733-
crisitem.author.parentorgFakultät Life Sciences-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

69
checked on 23.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons