DC Element | Wert | Sprache |
---|---|---|
dc.contributor.advisor | Putzar, Larissa | - |
dc.contributor.author | Kühn, Yannick | - |
dc.date.accessioned | 2024-06-13T05:32:06Z | - |
dc.date.available | 2024-06-13T05:32:06Z | - |
dc.date.created | 2022-11-22 | - |
dc.date.issued | 2024-06-13 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12738/15895 | - |
dc.description.abstract | In dieser Arbeit wird Facial Recognition behandelt: eine Technik, die es Computern erlauben soll Emotionen im menschlichen Gesicht zu erkennen. Zu diesem Zweck werden unterschiedliche CNNs untersucht und ein Modell erstellt, welches am FER2013-Datensatz trainiert wird. In einer anschließenden Reihe an unterschiedlichen Bildmanipulationen wird dieses Modell auf seine Robustheit überprüft. Dazu wird das entsprechende Netz auf den manipulierten Daten neu getestet und neu trainiert. In einer anschließenden Gegenüberstellung der so entstehenden Modelle wird ausgewertet, welche Manipulationen der Facial Expression Recognition schaden. | de |
dc.description.abstract | This thesis deals with Facial Expression Recognition: a technique, that allows computers to recognize different emotions in the human face. To accomplish this, different CNNs will be put to the test and a model is created that is trained on the FER2013-Dataset. Following this: several different image manipulations will be used on the FER2013-Dataset and the model's robustness will be tested. The model will be tested and trained again on the manipulated version of the dataset. In a subsequent comparison it will be analyzed which manipulations hinder Facial Expression Recognition. | en |
dc.language.iso | de | en_US |
dc.subject | Facial Expression Recognition | en_US |
dc.subject | Künstliche Neuronale Netze | en_US |
dc.subject | CNN | en_US |
dc.subject | ResNet | en_US |
dc.subject | Bildmanipulation | en_US |
dc.subject.ddc | 004: Informatik | en_US |
dc.title | Facial Expression Recognition mittels verschiedener CNNs im Vergleich mit anschließender Robustheitsprüfung | de |
dc.type | Thesis | en_US |
openaire.rights | info:eu-repo/semantics/openAccess | en_US |
thesis.grantor.department | Fakultät Design, Medien und Information | en_US |
thesis.grantor.department | Department Medientechnik | en_US |
thesis.grantor.universityOrInstitution | Hochschule für Angewandte Wissenschaften Hamburg | en_US |
tuhh.contributor.referee | Ortmann, Thorben | - |
tuhh.identifier.urn | urn:nbn:de:gbv:18302-reposit-187161 | - |
tuhh.oai.show | true | en_US |
tuhh.publication.institute | Fakultät Design, Medien und Information | en_US |
tuhh.publication.institute | Department Medientechnik | en_US |
tuhh.type.opus | Bachelor Thesis | - |
dc.type.casrai | Supervised Student Publication | - |
dc.type.dini | bachelorThesis | - |
dc.type.driver | bachelorThesis | - |
dc.type.status | info:eu-repo/semantics/publishedVersion | en_US |
dc.type.thesis | bachelorThesis | en_US |
dcterms.DCMIType | Text | - |
tuhh.dnb.status | domain | en_US |
item.advisorGND | Putzar, Larissa | - |
item.creatorGND | Kühn, Yannick | - |
item.languageiso639-1 | de | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_46ec | - |
item.creatorOrcid | Kühn, Yannick | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.openairetype | Thesis | - |
Enthalten in den Sammlungen: | Theses |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
BA_Facial_Expression_REcognition.pdf | 8.77 MB | Adobe PDF | Öffnen/Anzeigen |
Feedback zu diesem Datensatz
Export
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.