DC ElementWertSprache
dc.contributor.authorAlaparthi, Suresh-
dc.contributor.authorPeethambaran Subadra, Sharath-
dc.contributor.authorSheikhi, Shahram-
dc.date.accessioned2024-06-28T07:16:44Z-
dc.date.available2024-06-28T07:16:44Z-
dc.date.issued2024-05-23-
dc.identifier.issn1996-1944en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/15984-
dc.description.abstractWith additive manufacturing (AM) processes such as Wire Arc Additive Manufacturing (WAAM), components with complex shapes or with functional properties can be produced, with advantages in the areas of resource conservation, lightweight construction, and load-optimized production. However, proving component quality is a challenge because it is not possible to produce 100% defect-free components. In addition to this, statistically determined fluctuations in the wire quality, gas flow, and their interaction with process parameters result in a quality of the components that is not 100% reproducible. Complex testing procedures are therefore required to demonstrate the quality of the components, which are not cost-effective and lead to less efficiency. As part of the project “3DPrintFEM”, a sound emission analysis is used to evaluate the quality of AM components. Within the scope of the project, an approach was being developed to determine the quality of an AM part dependent not necessarily on its geometry. Samples were produced from WAAM, which were later cut and milled to precision. To determine the frequencies, the samples were put through a resonant frequency test (RFM). The unwanted modes were then removed from the spectrum produced by the experiments by comparing it with FEM simulations. Later, defects were introduced in experimental samples in compliance with the ISO 5817 guidelines. In order to create a database of frequencies related to the degree of the sample defect, they were subjected to RFM. The database was further augmented through frequencies from simulations performed on samples with similar geometries, and, hence, a training set was generated for an algorithm. A machine-learning algorithm based on regression modelling was trained based on the database to sort samples according to the degree of flaws in them. The algorithm’s detectability was evaluated using samples that had a known level of flaws which forms the test dataset. Based on the outcome, the algorithm will be integrated into an equipment developed in-house to monitor the quality of samples produced, thereby having an in-house quality assessment routine. The equipment shall be less expensive than conventional acoustic equipment, thus helping the industry cut costs when validating the quality of their components.en
dc.description.sponsorshipBundesministerium für Wirtschaft und Klimaschutzen_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofMaterials : Molecular Diversity Preservation Internationalen_US
dc.subjectacousticsen_US
dc.subjectadditive manufacturingen_US
dc.subjectdata acquisitionen_US
dc.subjectdefectsen_US
dc.subjectgas metal arc weldingen_US
dc.subjectmicrostructureen_US
dc.subjectnon-destructive testingen_US
dc.subjectporosityen_US
dc.subjectqualityen_US
dc.subjectsorting algorithmen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleA smart, data-driven approach to qualify additively manufactured steel samples for print-parameter-based imperfectionsen
dc.typeArticleen_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.otherTrapp, Sven-
tuhh.container.issue11en_US
tuhh.container.volume17en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.3390/ma17112513-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.relation.projectEntwicklung eines Analyseverfahrens zur Qualifizierung von additiv gefertigten Bauteilen (Mindeststärke von 2 mm) mit einer Güte von >98 % durch die Quantifizierung der Frequenzspektren (zwischen 15 und 40 kHz)en_US
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber2513en_US
local.comment.externalarticle number: 2513en_US
item.creatorGNDAlaparthi, Suresh-
item.creatorGNDPeethambaran Subadra, Sharath-
item.creatorGNDSheikhi, Shahram-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidAlaparthi, Suresh-
item.creatorOrcidPeethambaran Subadra, Sharath-
item.creatorOrcidSheikhi, Shahram-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.orcid0009-0004-4637-6115-
crisitem.author.orcid0000-0002-7558-638X-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.project.funderBundesministerium für Wirtschaft und Klimaschutz-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

100
checked on 22.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons