Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.advisorTropmann-Frick, Marina-
dc.contributor.authorAdhikari, Umesh-
dc.date.accessioned2024-07-09T10:07:11Z-
dc.date.available2024-07-09T10:07:11Z-
dc.date.created2022-06-06-
dc.date.issued2024-07-09-
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16035-
dc.description.abstractIn dieser Arbeit wurde deutscher Text (als Memo) von einer technischen Kundenhotline mit verschiedenen NLP Methoden analysiert. Dabei wurde experimentiert, ob firmendefinierte Stoppwörter definiert werden sollten. Außerdem wurde das Memo in Anfragetypen, wie zum Beispiel Störungsmeldung oder Technische Fragen, usw., klassifiziert. Anschließend wurde ein BERT-Modell mit einem eigenen Datensatz trainiert und evaluiert. Das Ergebnis dieser Arbeit zeigt, dass Kundendaten dazu verwendet werden können, beratungsintensive Kunden zu identifizieren.de
dc.description.abstractIn this paper, German text (as a memo) from a technical customer hotline was analyzed using various NLP methods. Thereby it was experimented whether to define company defined stop words. Also, the memo was classified into request types, such as disturbance report or technical questions, etc. Subsequently, a BERT model was trained and evaluated with a custom data set. The result of this work shows that customer data can be used to identify customers who require intensive consulting.en
dc.language.isodeen_US
dc.subjectSentimentanalyseen_US
dc.subjectNatural Language Processingen_US
dc.subjectNLPen_US
dc.subjectText Klassifikationen_US
dc.subjectBERTen_US
dc.subject.ddc004: Informatiken_US
dc.titleIdentifizierung der beratungsintensiven Kunden mittels Kundendaten einer Kundenhotlinede
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentFakultät Technik und Informatiken_US
thesis.grantor.departmentDepartment Informatiken_US
thesis.grantor.universityOrInstitutionHochschule für Angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeSchultz, Martin-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-188975-
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.type.opusBachelor Thesis-
dc.type.casraiSupervised Student Publication-
dc.type.dinibachelorThesis-
dc.type.driverbachelorThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesisbachelorThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomainen_US
item.advisorGNDTropmann-Frick, Marina-
item.creatorGNDAdhikari, Umesh-
item.languageiso639-1de-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.creatorOrcidAdhikari, Umesh-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeThesis-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
BA_Identifizierung_beratungsintensiven_Kunden.pdf821.68 kBAdobe PDFView/Open
Show simple item record

Page view(s)

69
checked on Nov 24, 2024

Download(s)

93
checked on Nov 24, 2024

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.