Verlagslink DOI: 10.1007/s00216-019-02122-4
10.1007/s00216-019-02063-y
Titel: Chemometric tools for the authentication of cod liver oil based on nuclear magnetic resonance and infrared spectroscopy data
Sprache: Englisch
Autorenschaft: Giese, Editha 
Rohn, Sascha 
Fritsche, Jan 
Schlagwörter: Adulteration; Artificial neural networks; Authenticity; Fish oil; Infrared spectroscopy; Nuclear magnetic resonance spectroscopy
Erscheinungsdatum: 2019
Verlag: Springer
Zeitschrift oder Schriftenreihe: Analytical and bioanalytical chemistry 
Zeitschriftenband: 411
Zeitschriftenausgabe: 26
Anfangsseite: 6931
Endseite: 6942
Zusammenfassung: 
Cod liver oil is a popular dietary supplement marketed as a rich source of omega-3 fatty acids as well as vitamins A and D. Due to its high market price, cod liver oil is vulnerable to adulteration with lower priced vegetable oils. In this study, 1H and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gas chromatography (coupled to a flame ionization detector) were used in combination with multivariate statistics to determine cod liver oil adulteration with common vegetable oils (sunflower and canola oils). Artificial neural networks (ANN) were able to differentiate adulteration levels based on infrared spectra with a detection limit of 0.22% and a root mean square error of prediction (RMSEP) of 0.86%. ANN models using 1H NMR and 13C NMR data yielded detection limits of 3.0% and 1.8% and RMSEPs of 2.7% and 1.1%, respectively. In comparison, the ANN model based on fatty acid profiles determined by gas chromatography achieved a detection limit of 0.81% and an RMSEP of 1.1%. The approach of using spectroscopic techniques in combination with multivariate statistics can be regarded as a promising tool for the authentication of cod liver oil and may pave the way for a holistic quality assessment of fish oils. [Figure not available: see fulltext.]
URI: https://hdl.handle.net/20.500.12738/16104
ISSN: 1618-2650
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Ökotrophologie 
Fakultät Life Sciences 
Dokumenttyp: Zeitschriftenbeitrag
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

45
checked on 22.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.