Verlagslink DOI: 10.2312/cgvc.20241232
Titel: Exploring data analysts' uncertainty reasoning strategies for effective uncertainty visualization design
Sprache: Englisch
Autorenschaft: Kinkeldey, Christoph  
Reljan-Delaney, Mirela 
Panagiotidou, Georgia 
Dykes, Jason 
Herausgeber*In: Hunter, David 
Slingsby, Aidan 
Schlagwörter: Social and Behavioral Sciences; Computer Sciences; Graphics and Human Computer Interfaces; Arts and Humanities; Physical Sciences and Mathematics; prototyping; reasoning; uncertainty visualization; user study; visual data analysis
Erscheinungsdatum: 9-Sep-2024
Verlag: The Eurographics Association
Wird ergänzt von: 10.17605/OSF.IO/S2NWF
Konferenz: Computer Graphics and Visual Computing 2024 
Zusammenfassung: 
Despite its proven positive effects, visual data analysis rarely includes information about data uncertainty. Building on past research, we explore the hypothesis that effective uncertainty visualizations must support reasoning strategies that enable data analysts to utilize uncertainty information (‘uncertainty reasoning strategies’, UnReSt). Through this work, we seek to gain insights into the reasoning strategies employed by domain experts for incorporating uncertainty into their visual analysis. Additionally, we aim to explore effective ways of designing uncertainty visualizations that support these strategies. For this purpose, we developed a methodology involving online meetings that included think-aloud protocols and interviews. We applied the methodology in a user study with five domain experts from the field of epidemiology. Our findings identify, describe, and discuss the UnReSt employed by our participants, allowing for initial recommendations as a foundation for future design guidelines: uncertainty visualization should (i) visually support data analysts in adapting or developing UnReSt, (ii) not facilitate ignoring the uncertainty, (iii) aid in the definition of acceptable levels of uncertainty, and (iv) not hide uncertain parts of the data by default. We reflect on the methodology we developed and applied in our study, addressing challenges related to the recruiting process, the examination of an existing tool along with familiar tasks and data, the design of bespoke prototypes in collaboration with visualization experts, and the timing of the meetings. We encourage visualization researchers to adapt this methodology to gain deeper insights into the UnReSt of data analysts and how uncertainty visualization can effectively support them. The supplemental materials can be found at https://osf.io/s2nwf/.
URI: https://hdl.handle.net/20.500.12738/16311
ISBN: 978-3-03868-249-3
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Information und Medienkommunikation 
Fakultät Design, Medien und Information 
Dokumenttyp: Konferenzveröffentlichung
Hinweise zur Quelle: Preprint: 10.31219/osf.io/xyc7b
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

63
checked on 24.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons