DC ElementWertSprache
dc.contributor.authorKinkeldey, Christoph-
dc.contributor.authorReljan-Delaney, Mirela-
dc.contributor.authorPanagiotidou, Georgia-
dc.contributor.authorDykes, Jason-
dc.date.accessioned2024-09-23T06:06:35Z-
dc.date.available2024-09-23T06:06:35Z-
dc.date.issued2024-09-09-
dc.identifier.isbn978-3-03868-249-3en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16311-
dc.description.abstractDespite its proven positive effects, visual data analysis rarely includes information about data uncertainty. Building on past research, we explore the hypothesis that effective uncertainty visualizations must support reasoning strategies that enable data analysts to utilize uncertainty information (‘uncertainty reasoning strategies’, UnReSt). Through this work, we seek to gain insights into the reasoning strategies employed by domain experts for incorporating uncertainty into their visual analysis. Additionally, we aim to explore effective ways of designing uncertainty visualizations that support these strategies. For this purpose, we developed a methodology involving online meetings that included think-aloud protocols and interviews. We applied the methodology in a user study with five domain experts from the field of epidemiology. Our findings identify, describe, and discuss the UnReSt employed by our participants, allowing for initial recommendations as a foundation for future design guidelines: uncertainty visualization should (i) visually support data analysts in adapting or developing UnReSt, (ii) not facilitate ignoring the uncertainty, (iii) aid in the definition of acceptable levels of uncertainty, and (iv) not hide uncertain parts of the data by default. We reflect on the methodology we developed and applied in our study, addressing challenges related to the recruiting process, the examination of an existing tool along with familiar tasks and data, the design of bespoke prototypes in collaboration with visualization experts, and the timing of the meetings. We encourage visualization researchers to adapt this methodology to gain deeper insights into the UnReSt of data analysts and how uncertainty visualization can effectively support them. The supplemental materials can be found at https://osf.io/s2nwf/.en
dc.language.isoenen_US
dc.publisherThe Eurographics Associationen_US
dc.subjectSocial and Behavioral Sciencesen_US
dc.subjectComputer Sciencesen_US
dc.subjectGraphics and Human Computer Interfacesen_US
dc.subjectArts and Humanitiesen_US
dc.subjectPhysical Sciences and Mathematicsen_US
dc.subjectprototypingen_US
dc.subjectreasoningen_US
dc.subjectuncertainty visualizationen_US
dc.subjectuser studyen_US
dc.subjectvisual data analysisen_US
dc.subject.ddc020: Bibliotheks- und Informationswissenschaften_US
dc.titleExploring data analysts' uncertainty reasoning strategies for effective uncertainty visualization designen
dc.typeinProceedingsen_US
dc.relation.conferenceComputer Graphics and Visual Computing 2024en_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorHunter, David-
local.contributorPerson.editorSlingsby, Aidan-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Information und Medienkommunikationen_US
tuhh.publication.instituteFakultät Design, Medien und Informationen_US
tuhh.publisher.doi10.2312/cgvc.20241232-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/updatedVersionen_US
dcterms.DCMITypeText-
datacite.relation.IsSupplementedBydoi:10.17605/OSF.IO/S2NWFen_US
local.comment.externalPreprint: 10.31219/osf.io/xyc7ben_US
item.creatorGNDKinkeldey, Christoph-
item.creatorGNDReljan-Delaney, Mirela-
item.creatorGNDPanagiotidou, Georgia-
item.creatorGNDDykes, Jason-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidKinkeldey, Christoph-
item.creatorOrcidReljan-Delaney, Mirela-
item.creatorOrcidPanagiotidou, Georgia-
item.creatorOrcidDykes, Jason-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Information und Medienkommunikation-
crisitem.author.orcid0000-0001-5669-6295-
crisitem.author.parentorgFakultät Design, Medien und Information-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

63
checked on 24.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons