
Title: | Robuster Reinforcement Learning Algorithmus zur Überbrückung der Sim-to-Real Gap im autonomen Fahren |
Language: | German |
Authors: | Hoffmann, Alexander |
Keywords: | Autonomes Fahren; Reinforcement Learning; Sim-to-Real Gap; Machine Learning; Deep Learning; Robuste Steuerung; Autonomous Driving; Reinforcement Learning; Robust Control |
Issue Date: | 27-Sep-2024 |
Abstract: | Die Diskrepanz zwischen der Realität und einer Simulation stellt die Forschung im Bereich des autonomen Fahrens vor zahlreiche Herausforderungen. Simulationen erfassen nicht alle Aspekte der realenWelt, und das Training in der Simulation kann zu unvorhersehbarem Verhalten in der tatsächlichen Anwendung führen, aufgrund der Unterschiede zwischen der Simulation und der realen Umgebung. In dieser Arb... The discrepancy between reality and simulation presents numerous challenges in the field of autonomous driving research. Simulations do not capture all aspects of the real world, and training in a simulation can lead to unpredictable behavior in real-world applications due to differences between the simulation and the actual environment. This work presents an approach to specifically address these... |
URI: | https://hdl.handle.net/20.500.12738/16344 |
Institute: | Fakultät Technik und Informatik Department Informatik |
Type: | Thesis |
Thesis type: | Master Thesis |
Advisor: | Pareigis, Stephan ![]() |
Referee: | Tiedemann, Tim |
Appears in Collections: | Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MA_Reinforcement Learning Algorithmus_Sim-to-Real Gap im autonomen Fahren.pdf | 2.98 MB | Adobe PDF | View/Open |
Note about this record
Export
Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.