DC FieldValueLanguage
dc.contributor.authorGbaguidi, Gouvidé Jean-
dc.contributor.authorIdrissou, Mouhamed-
dc.contributor.authorTopanou, Nikita-
dc.contributor.authorLeal Filho, Walter-
dc.contributor.authorKetoh, Guillaume K.-
dc.date.accessioned2024-10-08T14:05:25Z-
dc.date.available2024-10-08T14:05:25Z-
dc.date.issued2024-03-15-
dc.identifier.issn1475-2875en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16380-
dc.description.abstractBackground: Vegetation health (VH) is a powerful characteristic for forecasting malaria incidence in regions where the disease is prevalent. This study aims to determine how vegetation health affects the prevalence of malaria and create seasonal weather forecasts using NOAA/AVHRR environmental satellite data that can be substituted for malaria epidemic forecasts. Methods: Weekly advanced very high-resolution radiometer (AVHRR) data were retrieved from the NOAA satellite website from 2009 to 2021. The monthly number of malaria cases was collected from the Ministry of Health of Benin from 2009 to 2021 and matched with AVHRR data. Pearson correlation was calculated to investigate the impact of vegetation health on malaria transmission. Ordinary least squares (OLS), support vector machine (SVM) and principal component regression (PCR) were applied to forecast the monthly number of cases of malaria in Northern Benin. A random sample of proposed models was used to assess accuracy and bias. Results: Estimates place the annual percentage rise in malaria cases at 9.07% over 2009–2021 period. Moisture (VCI) for weeks 19–21 predicts 75% of the number of malaria cases in the month of the start of high mosquito activities. Soil temperature (TCI) and vegetation health index (VHI) predicted one month earlier than the start of mosquito activities through transmission, 78% of monthly malaria incidence. Conclusions: SVM model D is more effective than OLS model A in the prediction of malaria incidence in Northern Benin. These models are a very useful tool for stakeholders looking to lessen the impact of malaria in Benin.en
dc.language.isoenen_US
dc.publisherBioMed Centralen_US
dc.relation.ispartofMalaria journalen_US
dc.subjectAVHRRen_US
dc.subjectBeninen_US
dc.subjectForecastingen_US
dc.subjectMalariaen_US
dc.subjectVegetation healthen_US
dc.subject.ddc360: Soziale Probleme, Sozialarbeiten_US
dc.titleApplication of advanced very high-resolution radiometer (AVHRR)-based vegetation health indices for modelling and predicting malaria in Northern Benin, West Africaen
dc.typeArticleen_US
dc.identifier.pmid38491345en
dc.identifier.scopus2-s2.0-85187866636en
dc.description.versionPeerRevieweden_US
tuhh.container.issue1en_US
tuhh.container.volume23en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Gesundheitswissenschaftenen_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publisher.doi10.1186/s12936-024-04879-1-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.contributor.departmentcityLomeen
dc.contributor.departmentcityLomeen
dc.contributor.departmentcityAbomeyen
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcityLomeen
dc.contributor.departmentcountryTogoen
dc.contributor.departmentcountryTogoen
dc.contributor.departmentcountryBeninen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmentcountryTogoen
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60072777en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60072777en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/122256057en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60032697en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60072777en
dc.source.typearen
tuhh.container.articlenumber78en
dc.funding.numberundefineden
dc.funding.sponsorBundesministerium für Bildung und Forschungen
dc.relation.acronymBMBFen
local.comment.externalarticle number: 78 (2024)en_US
item.creatorGNDGbaguidi, Gouvidé Jean-
item.creatorGNDIdrissou, Mouhamed-
item.creatorGNDTopanou, Nikita-
item.creatorGNDLeal Filho, Walter-
item.creatorGNDKetoh, Guillaume K.-
item.fulltextNo Fulltext-
item.creatorOrcidGbaguidi, Gouvidé Jean-
item.creatorOrcidIdrissou, Mouhamed-
item.creatorOrcidTopanou, Nikita-
item.creatorOrcidLeal Filho, Walter-
item.creatorOrcidKetoh, Guillaume K.-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypeArticle-
crisitem.author.deptDepartment Gesundheitswissenschaften-
crisitem.author.orcid0000-0002-1241-5225-
crisitem.author.parentorgFakultät Life Sciences-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

87
checked on Dec 21, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons