DC FieldValueLanguage
dc.contributor.authorGbaguidi, Gouvidé Jean-
dc.contributor.authorTopanou, Nikita-
dc.contributor.authorLeal Filho, Walter-
dc.contributor.authorKetoh, Guillaume K.-
dc.date.accessioned2024-10-10T06:34:42Z-
dc.date.available2024-10-10T06:34:42Z-
dc.date.issued2024-02-13-
dc.identifier.issn1471-2458en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16381-
dc.description.abstractBackground: Malaria is one of the major vector-borne diseases most sensitive to climatic change in West Africa. The prevention and reduction of malaria are very difficult in Benin due to poverty, economic insatiability and the non control of environmental determinants. This study aims to develop an intelligent outbreak malaria early warning model driven by monthly time series climatic variables in the northern part of Benin. Methods: Climate data from nine rain gauge stations and malaria incidence data from 2009 to 2021 were extracted from the National Meteorological Agency (METEO) and the Ministry of Health of Benin, respectively. Projected relative humidity and temperature were obtained from the coordinated regional downscaling experiment (CORDEX) simulations of the Rossby Centre Regional Atmospheric regional climate model (RCA4). A structural equation model was employed to determine the effects of climatic variables on malaria incidence. We developed an intelligent malaria early warning model to predict the prevalence of malaria using machine learning by applying three machine learning algorithms, including linear regression (LiR), support vector machine (SVM), and negative binomial regression (NBiR). Results: Two ecological factors such as factor 1 (related to average mean relative humidity, average maximum relative humidity, and average maximal temperature) and factor 2 (related to average minimal temperature) affect the incidence of malaria. Support vector machine regression is the best-performing algorithm, predicting 82% of malaria incidence in the northern part of Benin. The projection reveals an increase in malaria incidence under RCP4.5 and RCP8.5 over the studied period. Conclusion: These results reveal that the northern part of Benin is at high risk of malaria, and specific malaria control programs are urged to reduce the risk of malaria.en
dc.language.isoenen_US
dc.publisherBioMed Centralen_US
dc.relation.ispartofBMC public healthen_US
dc.subjectClimate changeen_US
dc.subjectMalariaen_US
dc.subjectNorthern Beninen_US
dc.subjectPredictionen_US
dc.subject.ddc610: Medizinen_US
dc.titleTowards an intelligent malaria outbreak warning model based intelligent malaria outbreak warning in the northern part of Benin, West Africaen
dc.typeArticleen_US
dc.identifier.pmid38347490en
dc.identifier.scopus2-s2.0-85185141178en
dc.description.versionPeerRevieweden_US
tuhh.container.issue1en_US
tuhh.container.volume24en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Gesundheitswissenschaftenen_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publisher.doi10.1186/s12889-024-17847-w-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.contributor.departmentcityLomeen
dc.contributor.departmentcityAbomeyen
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcityLomeen
dc.contributor.departmentcountryTogoen
dc.contributor.departmentcountryBeninen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmentcountryTogoen
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60072777en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/122256057en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60032697en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60072777en
dc.source.typearen
tuhh.container.articlenumber450en
dc.funding.numberundefineden
dc.funding.sponsorBundesministerium für Bildung und Forschungen
dc.relation.acronymBMBFen
local.comment.externalarticle number: 450 (2024)en_US
item.creatorGNDGbaguidi, Gouvidé Jean-
item.creatorGNDTopanou, Nikita-
item.creatorGNDLeal Filho, Walter-
item.creatorGNDKetoh, Guillaume K.-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidGbaguidi, Gouvidé Jean-
item.creatorOrcidTopanou, Nikita-
item.creatorOrcidLeal Filho, Walter-
item.creatorOrcidKetoh, Guillaume K.-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptDepartment Gesundheitswissenschaften-
crisitem.author.orcid0000-0002-1241-5225-
crisitem.author.parentorgFakultät Life Sciences-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

138
checked on Nov 21, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons