DC ElementWertSprache
dc.contributor.authorNolte, Kristopher-
dc.contributor.authorSauer, Felix Gregor-
dc.contributor.authorBaumbach, Jan-
dc.contributor.authorKollmannsberger, Philip-
dc.contributor.authorLins, Christian-
dc.contributor.authorLühken, Renke-
dc.date.accessioned2024-10-17T13:42:07Z-
dc.date.available2024-10-17T13:42:07Z-
dc.date.issued2024-09-02-
dc.identifier.issn1756-3305en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16388-
dc.description.abstractMosquito-borne diseases are a major global health threat. Traditional morphological or molecular methods for identifying mosquito species often require specialized expertise or expensive laboratory equipment. The use of convolutional neural networks (CNNs) to identify mosquito species based on images may offer a promising alternative, but their practical implementation often remains limited. This study explores the applicability of CNNs in classifying mosquito species. It compares the efficacy of body and wing depictions across three image collection methods: a smartphone, macro-lens attached to a smartphone and a professional stereomicroscope. The study included 796 specimens of four morphologically similar Aedes species, Aedes aegypti, Ae. albopictus, Ae. koreicus and Ae. japonicus japonicus. The findings of this study indicate that CNN models demonstrate superior performance in wing-based classification 87.6% (95% CI: 84.2–91.0) compared to body-based classification 78.9% (95% CI: 77.7–80.0). Nevertheless, there are notable limitations of CNNs as they perform reliably across multiple devices only when trained specifically on those devices, resulting in an average decline of mean accuracy by 14%, even with extensive image augmentation. Additionally, we also estimate the required training data volume for effective classification, noting a reduced requirement for wing-based classification compared to body-based methods. Our study underscores the viability of both body and wing classification methods for mosquito species identification while emphasizing the need to address practical constraints in developing accessible classification systems. Graphical abstract: (Figure presented.)en
dc.language.isoenen_US
dc.publisherBioMed Centralen_US
dc.relation.ispartofParasites & vectorsen_US
dc.subjectArtificial intelligenceen_US
dc.subjectConvolutional neural networken_US
dc.subjectEntomologyen_US
dc.subjectMosquitoesen_US
dc.subject.ddc004: Informatiken_US
dc.titleRobust mosquito species identification from diverse body and wing images using deep learningen
dc.typeArticleen_US
dc.identifier.doi10.48441/4427.1963-
dc.description.versionPeerRevieweden_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
tuhh.container.issue1en_US
tuhh.container.volume17en_US
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-195722-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1186/s13071-024-06459-3-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber372 (2024)en_US
local.comment.externalNolte, K., Sauer, F.G., Baumbach, J. et al. Robust mosquito species identification from diverse body and wing images using deep learning. Parasites Vectors 17, 372 (2024). https://doi.org/10.1186/s13071-024-06459-3en_US
tuhh.apc.statusfalseen_US
item.creatorGNDNolte, Kristopher-
item.creatorGNDSauer, Felix Gregor-
item.creatorGNDBaumbach, Jan-
item.creatorGNDKollmannsberger, Philip-
item.creatorGNDLins, Christian-
item.creatorGNDLühken, Renke-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidNolte, Kristopher-
item.creatorOrcidSauer, Felix Gregor-
item.creatorOrcidBaumbach, Jan-
item.creatorOrcidKollmannsberger, Philip-
item.creatorOrcidLins, Christian-
item.creatorOrcidLühken, Renke-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0003-3714-0069-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications with full text
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
2024_Nolte_Robust_Mosquito_Species_Identification.pdf945.79 kBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

29
checked on 21.11.2024

Download(s)

5
checked on 21.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons