Volltextdatei(en) in REPOSIT vorhanden Open Access
DC ElementWertSprache
dc.contributor.advisorvon Luck, Kai-
dc.contributor.authorFlemming, Deike Maria-
dc.date.accessioned2024-10-25T10:09:08Z-
dc.date.available2024-10-25T10:09:08Z-
dc.date.created2022-02-09-
dc.date.issued2024-10-25-
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16437-
dc.description.abstractKünstliche Intelligenz (KI), insbesondere ihre Unterbereiche des maschinellen Lernens und des Deep Learning, ist ein vielversprechendes Werkzeug, das Bioinformatikern und pharmazeutischen Forschern zur Verfügung steht. Sie kann den Entwicklungsprozess von neuen Medikamenten auf vielfältige Weise unterstützen und beschleunigen. Diese Arbeit befasst sich mit Techniken der KI, die während des Forschungsprozesses angewendet werden, um neue Medikamente für bekannte und neu entdeckte Krankheiten zu entdecken.de
dc.description.abstractArtificial intelligence, particularly its subsets of machine learning and deep learning, is a promising tool available to bioinformaticians and pharmaceutical researchers. It can support the drug discovery process in numerous ways that help to make the drug discovery process faster and more targeted. This thesis takes a detailed look at the various artificial intelligence techniques that are being proposed and applied during the research process to discover new medications for both well-known and newly discovered diseases and medical conditions.en
dc.language.isoenen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectDrug Discovery Pipelineen_US
dc.subjectKünstliche Intelligenzen_US
dc.subject.ddc004: Informatiken_US
dc.titleHow can AI support wet lab work? A literature review of current artificial intelligence techniques for the early stages of the drug discovery pipelineen
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentDepartment Informatiken_US
thesis.grantor.universityOrInstitutionHochschule für Angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeLins, Christian-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-196323-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.type.opusBachelor Thesis-
dc.type.casraiSupervised Student Publication-
dc.type.dinibachelorThesis-
dc.type.driverbachelorThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesisbachelorThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomainen_US
item.advisorGNDvon Luck, Kai-
item.creatorGNDFlemming, Deike Maria-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.creatorOrcidFlemming, Deike Maria-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeThesis-
Enthalten in den Sammlungen:Theses
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
BA_How can AI support wet lab work_geschwärzt.pdf1.27 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

14
checked on 23.11.2024

Download(s)

38
checked on 23.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.