Publisher DOI: | 10.1016/j.cej.2024.155726 | Title: | Trajectory-based breakup modelling for dense bubbly flows | Language: | English | Authors: | Weiland, Christian von Kameke, Alexandra Schlüter, Michael |
Keywords: | Bubble breakup; Bubble size distribution; Computational fluid dynamics; Multiphase flows; Trajectory-based methods | Issue Date: | 3-Oct-2024 | Publisher: | Elsevier | Journal or Series Name: | The chemical engineering journal | Volume: | 499 | Project: | B04 - Tailored transport processes in multiphase flows | Abstract: | A new model to predict the breakup of gaseous bubbles in a continuous liquid phase is developed. In the model each bubble is modelled as a spring–damper system, namely a Kelvin–Voigt element, while the outer force is derived by a Lagrangian analysis determining the largest stretching rate of the flow field below. The developed model is based on physical principles and no further arbitrary parameters have to be adjusted. Each bubble is observed on its way through the bubbly flow individually, taking into account its history along its respective path. With the implemented model numerical simulations in a wide range of scales are conducted, ranging from the laboratory scale of a vessel of 3L to the large industrial scale of 15m3. The simplicity of the model allows for a good cost to benefit ratio. In the present work, the achieved results are compared to experimental data obtained from optical measurements in a replica of a 200L aerated stirred tank reactor for various stirrer frequencies. |
URI: | https://hdl.handle.net/20.500.12738/16526 | ISSN: | 1873-3212 | Review status: | This version was peer reviewed (peer review) | Institute: | Department Maschinenbau und Produktion Fakultät Technik und Informatik Heinrich-Blasius-Institut für Physikalische Technologien |
Type: | Article | Additional note: | article number: 155726 | Funded by: | Deutsche Forschungsgemeinschaft |
Appears in Collections: | Publications without full text |
Show full item record
Add Files to Item
Note about this record
Export
This item is licensed under a Creative Commons License