DC FieldValueLanguage
dc.contributor.authorBach, Jörn-
dc.contributor.authorSchwanenberger, Christian-
dc.contributor.authorStelldinger, Peer-
dc.contributor.authorGrohsjean, Alexander-
dc.date.accessioned2024-11-18T12:47:40Z-
dc.date.available2024-11-18T12:47:40Z-
dc.date.issued2024-04-23-
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16529-
dc.description.abstractThe recent decade has seen a growth of machine learning algorithms across all disciplines. In LHC physics, a multitude of applications have been tested and - in particular Deep Neural Networks (DNNs) - have been proven to be very effective in various usecases, for example in particle tagging or for separating signal from background in analyses. Since training data is primarily generated through Monte-Carlo (MC) simulation, specific challenges can emerge during DNN training due to partly negatively weighted samples. MC simulations produce negative event weights in the presence of destructive interference in the process or in the case of next-to-leading order simulations with an additive matching scheme. The negatively weighted training data impair the DNN convergence. Therefore, the current state of the art is to use reweighting methods that lead to consistently positive weights. However this alters the input distribution. We propose an alternative technique that is interpretable, computationally efficient and does not affect the input distribution. Furthermore, we show the method employed on a hypothetical search for a beyond the standard model heavy Higgs boson and discuss implications of negative weights throughout DNN based analyses.en
dc.language.isoenen_US
dc.publisherDeutsches Elektronen-Synchrotron (DESY)en_US
dc.subjectExperimenten_US
dc.subjectFundamental Particles and Forcesen_US
dc.subjectCMSen_US
dc.subject.ddc004: Informatiken_US
dc.titleDealing with negatively weighted Events in DNN-based LHC Analysesen
dc.title.alternativeDer Umgang mit negativ gewichteten Ereignissen in DNN-basierten LHC-Analysende
dc.typePresentationen_US
dc.relation.conferenceFrühjahrstagung der Deutschen Physikalischen Gesellschaft 2024en_US
dc.description.versionPeerRevieweden_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteForschungs- und Transferzentrum Smart Systemsen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.urlhttps://bib-pubdb1.desy.de/record/605866-
tuhh.publisher.urlhttps://www.dpg-verhandlungen.de/year/2024/conference/karlsruhe/part/t/session/106/contribution/3-
tuhh.type.opusPräsentation-
dc.type.casraiOther-
dc.type.diniOther-
dc.type.driverother-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeInteractiveResource-
item.grantfulltextnone-
item.creatorOrcidBach, Jörn-
item.creatorOrcidSchwanenberger, Christian-
item.creatorOrcidStelldinger, Peer-
item.creatorOrcidGrohsjean, Alexander-
item.creatorGNDBach, Jörn-
item.creatorGNDSchwanenberger, Christian-
item.creatorGNDStelldinger, Peer-
item.creatorGNDGrohsjean, Alexander-
item.openairetypePresentation-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0001-8079-2797-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

27
checked on Feb 3, 2025

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.