Verlagslink DOI: 10.1016/j.jcta.2025.106030
10.48550/arXiv.2405.03309
Titel: On de Bruijn Rings and families of almost perfect maps
Sonstige Titel: Über de Bruijn Ringe und fast perfekte Karten
Sprache: Englisch
Autorenschaft: Stelldinger, Peer  
Schlagwörter: De Bruijn torus; De Bruijn ring; Perfect map; Sub-perfect map
Erscheinungsdatum: 27-Feb-2025
Verlag: Elsevier
Zeitschrift oder Schriftenreihe: Journal of combinatorial theory : JCTA. Series A 
Zeitschriftenband: 214
Zusammenfassung: 
De Bruijn tori, also called perfect maps, are two-dimensional periodic arrays of letters drawn from a given finite alphabet, such that each possible pattern of a given shape (m,n) appears exactly once within one period of the torus. It is still unknown if de Bruijn tori of some certain size exist, like e.g. square shaped de Bruijn Tori with odd m=n in {3,5,7} and an even alphabet size k. However, in certain applications like positional coding, sub-perfect maps are sufficient, i.e. one does not need every possible (m,n)-pattern to appear, as long as a sufficient large number of such patterns is captured and every pattern occurs at most once. We show, that given any m=n and a square alphabet size k², one can efficiently construct a sub-perfect map which is almost perfect, i.e. of almost maximal size. We do this by introducing de Bruijn rings, i.e. sub-perfect maps of minimal height, and providing an efficient construction method for them. We extend our results to non-square torus shapes and arbitrary non-prime alphabet sizes.
URI: https://hdl.handle.net/20.500.12738/16530
ISSN: 0097-3165
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Forschungs- und Transferzentrum Smart Systems 
Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Zeitschriftenbeitrag
Hinweise zur Quelle: Preprint: https://doi.org/10.48550/arXiv.2405.03309. Verlagsversion: https://doi.org/10.1016/j.jcta.2025.106030.
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

59
checked on 03.04.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons