Verlagslink: https://users.informatik.haw-hamburg.de/~ubicomp/arbeiten/papers/Petra2024.pdf
Verlagslink DOI: 10.1145/3652037.3652047
Titel: Assessment of the applicability of large language models for quantitative stock price prediction
Sonstige Titel: Bewertung der Anwendbarkeit umfangreicher Sprachmodelle für die quantitative Vorhersage von Aktienkursen
Sprache: Englisch
Autorenschaft: Voigt, Frederic 
von Luck, Kai 
Stelldinger, Peer  
Schlagwörter: stock price prediction; quantitative analysis; stock embeddings; large language models; natural language processing; big data
Erscheinungsdatum: 26-Jun-2024
Verlag: Association for Computing Machinery
Teil der Schriftenreihe: Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments 
Anfangsseite: 293
Endseite: 302
Konferenz: International Conference on PErvasive Technologies Related to Assistive Environments 2024 
Zusammenfassung: 
In accordance with the findings presented in [34], this study examines the applicability of Machine Learning (ML) models and training strategies from the Natural Language Processing (NLP) domain in addressing time series problems, emphasizing the structural and operational aspects of these models and strategies. Recognizing the structural congruence within the data, we opt for Stock Price Prediction (SPP) as the designated domain to assess the transferability of NLP models and strategies. Building upon initial positive outcomes derived from quantitative SPP models in our ongoing research endeavors, we provide a rationale for exploring a range of additional methods and conducting subsequent research experiments. The outlined research aims to elucidate the efficacy of leveraging NLP models and techniques for addressing time series problems exemplified as SPP.
URI: https://hdl.handle.net/20.500.12738/16531
ISBN: 979-8-4007-1760-4
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Forschungs- und Transferzentrum Smart Systems 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

10
checked on 21.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.