DC ElementWertSprache
dc.contributor.authorVoigt, Frederic-
dc.contributor.authorvon Luck, Kai-
dc.contributor.authorStelldinger, Peer-
dc.date.accessioned2024-11-18T15:04:26Z-
dc.date.available2024-11-18T15:04:26Z-
dc.date.issued2024-06-26-
dc.identifier.isbn979-8-4007-1760-4en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16531-
dc.description.abstractIn accordance with the findings presented in [34], this study examines the applicability of Machine Learning (ML) models and training strategies from the Natural Language Processing (NLP) domain in addressing time series problems, emphasizing the structural and operational aspects of these models and strategies. Recognizing the structural congruence within the data, we opt for Stock Price Prediction (SPP) as the designated domain to assess the transferability of NLP models and strategies. Building upon initial positive outcomes derived from quantitative SPP models in our ongoing research endeavors, we provide a rationale for exploring a range of additional methods and conducting subsequent research experiments. The outlined research aims to elucidate the efficacy of leveraging NLP models and techniques for addressing time series problems exemplified as SPP.en
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.subjectstock price predictionen_US
dc.subjectquantitative analysisen_US
dc.subjectstock embeddingsen_US
dc.subjectlarge language modelsen_US
dc.subjectnatural language processingen_US
dc.subjectbig dataen_US
dc.subject.ddc004: Informatiken_US
dc.titleAssessment of the applicability of large language models for quantitative stock price predictionen
dc.title.alternativeBewertung der Anwendbarkeit umfangreicher Sprachmodelle für die quantitative Vorhersage von Aktienkursende
dc.typeinProceedingsen_US
dc.relation.conferenceInternational Conference on PErvasive Technologies Related to Assistive Environments 2024en_US
dc.description.versionPeerRevieweden_US
tuhh.container.endpage302en_US
tuhh.container.startpage293en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteForschungs- und Transferzentrum Smart Systemsen_US
tuhh.publisher.doi10.1145/3652037.3652047-
tuhh.publisher.urlhttps://users.informatik.haw-hamburg.de/~ubicomp/arbeiten/papers/Petra2024.pdf-
tuhh.relation.ispartofseriesProceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environmentsen_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.seriesrefProceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments-
item.tuhhseriesidProceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments-
item.creatorGNDVoigt, Frederic-
item.creatorGNDvon Luck, Kai-
item.creatorGNDStelldinger, Peer-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidVoigt, Frederic-
item.creatorOrcidvon Luck, Kai-
item.creatorOrcidStelldinger, Peer-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0001-8079-2797-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

10
checked on 21.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.