Publisher DOI: 10.1109/SEST61601.2024.10694018
Title: SMARDcast : day-ahead forecasting of German electricity consumption with deep learning
Language: English
Authors: Krüger, Nick 
Eger, Kolja 
Renz, Wolfgang 
Other : Institute of Electrical and Electronics Engineers 
Keywords: CNN-LSTM; neural networks; seasonality; SMARD; time-series forecasting
Issue Date: 4-Oct-2024
Publisher: IEEE
Part of Series: 2024 International Conference on Smart Energy Systems and Technologies (SEST) 
Conference: International Conference on Smart Energy Systems and Technologies 2024 
URI: https://hdl.handle.net/20.500.12738/16735
ISBN: 979-8-3503-8649-3
979-8-3503-8650-9
ISSN: 2836-4678
Review status: This version was peer reviewed (peer review)
Institute: Department Informations- und Elektrotechnik 
Fakultät Technik und Informatik 
Type: Chapter/Article (Proceedings)
Appears in Collections:Publications without full text

Show full item record

Page view(s)

21
checked on Dec 27, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.