DC ElementWertSprache
dc.contributor.authorNyambo, Devotha G.-
dc.contributor.authorClemen, Thomas-
dc.date.accessioned2024-12-19T08:46:57Z-
dc.date.available2024-12-19T08:46:57Z-
dc.date.issued2023-02-28-
dc.identifier.issn2077-0472en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16760-
dc.description.abstractMulti-agent-based modelling and simulation provides an adequate environment to study the real world. This paper presents the use of a multi-agent research and simulation (MARS) framework and model design based on the overview, design concepts, design (ODD) protocol to model and simulate small-scale management strategies that are important for increased milk yield per cow. In reality, strategies for farm management at a small-scale level are purely based on heuristics that cost farmers and lead to inadequate milk yields. A differential assessment of the farming strategies was conducted to yield a data-driven approach for selection of the best strategies, which in turn will optimize investments and increase milk yield. The agent-based modelling and simulation revealed that, the studied strategies based on income, farm, and farmer-based characteristics influenced an increase of up to 7.72 L of milk above the average (12.7 ± 4.89). Generally, there was an increase in milk yield based on the identified evolvement strategies; from a baseline data average milk yield of 12.7 ± 4.89 to simulated milk yield average of 17.57 ± 0.72. Evaluating the agent-based models in real-world scenarios will strengthen the assurance that the identified strategies can move small-scale dairy farmers from low to higher milk producers.en
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAgricultureen_US
dc.subjectdairy farmingen_US
dc.subjectmodellingen_US
dc.subjectmulti-agentsen_US
dc.subjectsimulationen_US
dc.subjectsmall-scale farmersen_US
dc.subjectsmart farmingen_US
dc.subject.ddc004: Informatiken_US
dc.titleDifferential assessment of strategies to increase milk yield in small-scale dairy farming systems using multi-agent modelling and simulationen
dc.typeArticleen_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorNorton, Tomas-
tuhh.container.issue3en_US
tuhh.container.volume13en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.3390/agriculture13030590-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber590-
local.comment.externalarticle number: 590en_US
item.creatorGNDNyambo, Devotha G.-
item.creatorGNDClemen, Thomas-
item.fulltextNo Fulltext-
item.creatorOrcidNyambo, Devotha G.-
item.creatorOrcidClemen, Thomas-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypeArticle-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0002-8200-5141-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

7
checked on 21.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons