DC FieldValueLanguage
dc.contributor.authorNyambo, Devotha G.-
dc.contributor.authorClemen, Thomas-
dc.date.accessioned2024-12-19T08:46:57Z-
dc.date.available2024-12-19T08:46:57Z-
dc.date.issued2023-02-28-
dc.identifier.issn2077-0472en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16760-
dc.description.abstractMulti-agent-based modelling and simulation provides an adequate environment to study the real world. This paper presents the use of a multi-agent research and simulation (MARS) framework and model design based on the overview, design concepts, design (ODD) protocol to model and simulate small-scale management strategies that are important for increased milk yield per cow. In reality, strategies for farm management at a small-scale level are purely based on heuristics that cost farmers and lead to inadequate milk yields. A differential assessment of the farming strategies was conducted to yield a data-driven approach for selection of the best strategies, which in turn will optimize investments and increase milk yield. The agent-based modelling and simulation revealed that, the studied strategies based on income, farm, and farmer-based characteristics influenced an increase of up to 7.72 L of milk above the average (12.7 ± 4.89). Generally, there was an increase in milk yield based on the identified evolvement strategies; from a baseline data average milk yield of 12.7 ± 4.89 to simulated milk yield average of 17.57 ± 0.72. Evaluating the agent-based models in real-world scenarios will strengthen the assurance that the identified strategies can move small-scale dairy farmers from low to higher milk producers.en
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAgricultureen_US
dc.subjectdairy farmingen_US
dc.subjectmodellingen_US
dc.subjectmulti-agentsen_US
dc.subjectsimulationen_US
dc.subjectsmall-scale farmersen_US
dc.subjectsmart farmingen_US
dc.subject.ddc004: Informatiken_US
dc.titleDifferential assessment of strategies to increase milk yield in small-scale dairy farming systems using multi-agent modelling and simulationen
dc.typeArticleen_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorNorton, Tomas-
tuhh.container.issue3en_US
tuhh.container.volume13en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.3390/agriculture13030590-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber590-
local.comment.externalarticle number: 590en_US
item.grantfulltextnone-
item.creatorGNDNyambo, Devotha G.-
item.creatorGNDClemen, Thomas-
item.cerifentitytypePublications-
item.creatorOrcidNyambo, Devotha G.-
item.creatorOrcidClemen, Thomas-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0002-8200-5141-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

52
checked on Apr 3, 2025

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons