Publisher DOI: 10.1109/ICECCME62383.2024.10796699
Title: Bat call classification in acoustic recordings with drone noise using deep learning
Language: English
Authors: Hesse, Mira 
Roswag, Marc 
Taefi, Tessa T.  
Keywords: Deep Learning; Transfer Learning; Transformers; Drones; Noise
Issue Date: 23-Dec-2024
Publisher: IEEE
Part of Series: 2024 4th International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) 
Project: Mobile Erfassung von Fledermäusen bei On-Shore Windenergieanlagen durch autonome Messdrohnen - Teilvorhaben: FriendlyDrone 
Conference: International Conference on Electrical, Computer, Communications and Mechatronics Engineering 2024 
Abstract: 
This study compares three pretrained deep learning models - BatDetect2, Bioacoustic Transformer (BAT), and Patchout faSt Spectrogram Transformer (PaSST) - for bat call and general audio classification, with and without further training, on a three-class multilabel dataset contaminated with drone noise. Without retraining, BatDetect2 and BAT showed minimal differentiation between noisy and clean datasets. After transfer learning and exploring resampling and augmentation to address class imbalance, the PaSST model with oversampling achieved the best performance, with an Fl-score of 94.9% on binary classification, and micro and macro Fl-scores of 90.6% and 78.5%, respectively, for multilabel classification.
URI: https://hdl.handle.net/20.500.12738/16836
ISBN: 979-8-3503-9118-3
979-8-3503-9119-0
Review status: This version was peer reviewed (peer review)
Institute: Competence Center Erneuerbare Energien und Energieeffizienz 
Department Medientechnik 
Fakultät Design, Medien und Information 
Type: Chapter/Article (Proceedings)
Funded by: Bundesministerium für Wirtschaft und Klimaschutz 
Appears in Collections:Publications without full text

Show full item record

Page view(s)

20
checked on Jan 21, 2025

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.