Verlagslink DOI: | 10.1109/ICECCME62383.2024.10796699 | Titel: | Bat call classification in acoustic recordings with drone noise using deep learning | Sprache: | Englisch | Autorenschaft: | Hesse, Mira Roswag, Marc Taefi, Tessa T. |
Schlagwörter: | Deep Learning; Transfer Learning; Transformers; Drones; Noise | Erscheinungsdatum: | 23-Dez-2024 | Verlag: | IEEE | Teil der Schriftenreihe: | 2024 4th International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) | Projekt: | Mobile Erfassung von Fledermäusen bei On-Shore Windenergieanlagen durch autonome Messdrohnen - Teilvorhaben: FriendlyDrone | Konferenz: | International Conference on Electrical, Computer, Communications and Mechatronics Engineering 2024 | Zusammenfassung: | This study compares three pretrained deep learning models - BatDetect2, Bioacoustic Transformer (BAT), and Patchout faSt Spectrogram Transformer (PaSST) - for bat call and general audio classification, with and without further training, on a three-class multilabel dataset contaminated with drone noise. Without retraining, BatDetect2 and BAT showed minimal differentiation between noisy and clean datasets. After transfer learning and exploring resampling and augmentation to address class imbalance, the PaSST model with oversampling achieved the best performance, with an Fl-score of 94.9% on binary classification, and micro and macro Fl-scores of 90.6% and 78.5%, respectively, for multilabel classification. |
URI: | https://hdl.handle.net/20.500.12738/16836 | ISBN: | 979-8-3503-9118-3 979-8-3503-9119-0 |
Begutachtungsstatus: | Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review) | Einrichtung: | Competence Center Erneuerbare Energien und Energieeffizienz Department Medientechnik Fakultät Design, Medien und Information |
Dokumenttyp: | Konferenzveröffentlichung | Sponsor / Fördernde Einrichtung: | Bundesministerium für Wirtschaft und Klimaschutz |
Enthalten in den Sammlungen: | Publications without full text |
Zur Langanzeige
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.