DC ElementWertSprache
dc.contributor.authorHesse, Mira-
dc.contributor.authorRoswag, Marc-
dc.contributor.authorTaefi, Tessa T.-
dc.date.accessioned2025-01-16T08:47:21Z-
dc.date.available2025-01-16T08:47:21Z-
dc.date.issued2024-12-23-
dc.identifier.isbn979-8-3503-9118-3en_US
dc.identifier.isbn979-8-3503-9119-0en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16836-
dc.description.abstractThis study compares three pretrained deep learning models - BatDetect2, Bioacoustic Transformer (BAT), and Patchout faSt Spectrogram Transformer (PaSST) - for bat call and general audio classification, with and without further training, on a three-class multilabel dataset contaminated with drone noise. Without retraining, BatDetect2 and BAT showed minimal differentiation between noisy and clean datasets. After transfer learning and exploring resampling and augmentation to address class imbalance, the PaSST model with oversampling achieved the best performance, with an Fl-score of 94.9% on binary classification, and micro and macro Fl-scores of 90.6% and 78.5%, respectively, for multilabel classification.en
dc.description.sponsorshipBundesministerium für Wirtschaft und Klimaschutzen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectDeep Learningen_US
dc.subjectTransfer Learningen_US
dc.subjectTransformersen_US
dc.subjectDronesen_US
dc.subjectNoiseen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleBat call classification in acoustic recordings with drone noise using deep learningen
dc.typeinProceedingsen_US
dc.relation.conferenceInternational Conference on Electrical, Computer, Communications and Mechatronics Engineering 2024en_US
dc.description.versionPeerRevieweden_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteCompetence Center Erneuerbare Energien und Energieeffizienzen_US
tuhh.publication.instituteDepartment Medientechniken_US
tuhh.publication.instituteFakultät Design, Medien und Informationen_US
tuhh.publisher.doi10.1109/ICECCME62383.2024.10796699-
tuhh.relation.ispartofseries2024 4th International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)en_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.relation.projectMobile Erfassung von Fledermäusen bei On-Shore Windenergieanlagen durch autonome Messdrohnen - Teilvorhaben: FriendlyDroneen_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.creatorOrcidHesse, Mira-
item.creatorOrcidRoswag, Marc-
item.creatorOrcidTaefi, Tessa T.-
item.tuhhseriesid2024 4th International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)-
item.creatorGNDHesse, Mira-
item.creatorGNDRoswag, Marc-
item.creatorGNDTaefi, Tessa T.-
item.openairetypeinProceedings-
item.seriesref2024 4th International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment Medientechnik-
crisitem.author.deptDepartment Medientechnik-
crisitem.author.orcid0000-0002-8391-956X-
crisitem.author.parentorgFakultät Design, Medien und Information-
crisitem.author.parentorgFakultät Design, Medien und Information-
crisitem.project.funderBundesministerium für Wirtschaft und Klimaschutz-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

20
checked on 21.01.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.