Verlagslink DOI: 10.1007/s13272-024-00752-8
Titel: Development of an acoustic fault diagnosis system for UAV propeller blades
Sprache: Englisch
Autorenschaft: Steinhoff, Leon 
Koschlik, Ann-Kathrin 
Arts, Emy 
Soria-Gomez, Maria 
Raddatz, Florian 
Kunz, Veit Dominik 
Schlagwörter: UAV maintenance; Machine condition monitoring; Acoustic diagnosis; Non-destructive testing; Machine learning
Erscheinungsdatum: 12-Jul-2024
Verlag: Springer
Zeitschrift oder Schriftenreihe: CEAS aeronautical journal : an official journal of the Council of European Aerospace Societies 
Zeitschriftenband: 15
Zeitschriftenausgabe: 4
Anfangsseite: 881
Endseite: 893
Zusammenfassung: 
With the rapid growth in demand for unmanned aerial vehicles (UAVs), novel maintenance technologies are essential for ensuring automatic, safe, and reliable operations. This study compares two fault detection systems that utilize the acoustic signature of UAV propeller blades for classifying their health state. By employing an acoustic camera with 112 microphones for spatial resolution of sound sources, datasets of acoustic images are generated in three differently reverberating environments for the third octave frequency bands of 6300 Hz, 8000 Hz, 10,000 Hz and 12,500 Hz. A convolutional neural network (CNN) is trained and evaluated with maximum F1-scores of 0.9962 and 0.9745 for two and three propeller health classes, respectively. Furthermore, we propose a second approach based on a linear classification (LC), which utilizes a rotating beamformer for comparison. This approach uses only two sound sources that are identified after the acoustic beamforming of a two-bladed propeller. In comparison, this algorithm detects propeller tip damages without applying a machine learning algorithm and reaches a slightly lower F1-score of 0.9441.
URI: https://hdl.handle.net/20.500.12738/16958
DOI: 10.48441/4427.2257
ISSN: 1869-5590
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Fakultät Life Sciences 
Department Verfahrenstechnik 
Dokumenttyp: Zeitschriftenbeitrag
Enthalten in den Sammlungen:Publications with full text

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
s13272-024-00752-8.pdf1.1 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Seitenansichten

20
checked on 22.02.2025

Download(s)

6
checked on 22.02.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons