Verlagslink DOI: 10.1109/ACII63134.2024.00014
10.48550/arXiv.2410.03331
Titel: EmojiHeroVR : a study on facial expression recognition under partial occlusion from head-mounted displays
Sprache: Englisch
Autorenschaft: Ortmann, Thorben  
Wang, Qi 
Putzar, Larissa 
Schlagwörter: facial expressions; emotion recognition; virtual reality; affective game
Erscheinungsdatum: 24-Apr-2025
Verlag: IEEE
Teil der Schriftenreihe: 2024 12th International Conference on Affective Computing and Intelligent Interaction : proceedings : ACII 2024 : 15-18 September 2024 : Glasgow, United Kingdom 
Konferenz: International Conference on Affective Computing and Intelligent Interaction 2024 
Zusammenfassung: 
Emotion recognition promotes the evaluation and enhancement of Virtual Reality (VR) experiences by providing emotional feedback and enabling advanced personalization. However, facial expressions are rarely used to recognize users’ emotions, as Head-Mounted Displays (HMDs) occlude the upper half of the face. To address this issue, we conducted a study with 37 participants who played our novel affective VR game EmojiHeroVR. The collected database, EmoHeVRDB (EmojiHeroVR Database), includes 3,556 labeled facial images of 1,778 reenacted emotions. For each labeled image, we also provide 29 additional frames recorded directly before and after the labeled image to facilitate dynamic Facial Expression Recognition (FER). Additionally, EmoHeVRDB includes data on the activations of 63 facial expressions captured via the Meta Quest Pro VR headset for each frame. Leveraging our database, we conducted a baseline evaluation on the static FER classification task with six basic emotions and neutral using the EfficientNet-B0 architecture. The best model achieved an accuracy of 69.84% on the test set, indicating that FER under HMD occlusion is feasible but significantly more challenging than conventional FER.
URI: https://hdl.handle.net/20.500.12738/17122
ISBN: 979-8-3315-1643-7
979-8-3315-1644-4
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Medientechnik 
Fakultät Design, Medien und Information 
Dokumenttyp: Konferenzveröffentlichung
Hinweise zur Quelle: Preprint: https://doi.org/10.48550/arXiv.2410.03331. Verlagsversion: https://doi.org/10.1109/ACII63134.2024.00014.
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

48
checked on 10.08.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.