Verlagslink DOI: 10.1007/s10898-024-01376-2
Titel: On the use of overlapping convex hull relaxations to solve nonconvex MINLPs
Sprache: Englisch
Autorenschaft: Wu, Ouyang 
Muts, Pavlo 
Nowak, Ivo 
Hendrix, Eligius M.T. 
Schlagwörter: Column generation; Decomposition method; Mixed-integer nonlinear programming; Nonconvex optimization; Parallel computing
Erscheinungsdatum: 22-Mär-2024
Verlag: Springer
Zeitschrift oder Schriftenreihe: Journal of Global Optimization 
Zeitschriftenband: 91
Anfangsseite: 415
Endseite: 436
Zusammenfassung: 
We present a novel relaxation for general nonconvex sparse MINLP problems, called overlapping convex hull relaxation (CHR). It is defined by replacing all nonlinear constraint sets by their convex hulls. If the convex hulls are disjunctive, e.g. if the MINLP is block-separable, the CHR is equivalent to the convex hull relaxation obtained by (standard) column generation (CG). The CHR can be used for computing an initial lower bound in the root node of a branch-and-bound algorithm, or for computing a start vector for a local-search-based MINLP heuristic. We describe a dynamic block and column generation (DBCG) MINLP algorithm to generate the CHR by dynamically adding aggregated blocks. The idea of adding aggregated blocks in the CHR is similar to the well-known cutting plane approach. Numerical experiments on nonconvex MINLP instances show that the duality gap can be significantly reduced with the results of CHRs. DBCG is implemented as part of the CG-MINLP framework Decogo, see https://decogo.readthedocs.io/en/latest/index.html.
URI: https://hdl.handle.net/20.500.12738/17169
ISSN: 1573-2916
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Maschinenbau und Produktion 
Fakultät Technik und Informatik 
Dokumenttyp: Zeitschriftenbeitrag
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

5
checked on 22.02.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons