DC FieldValueLanguage
dc.contributor.authorBudewig, Laura-
dc.contributor.authorSon, Sang Kil-
dc.contributor.authorJurek, Zoltan-
dc.contributor.authorAbdullah, Malik Muhammad-
dc.contributor.authorTropmann-Frick, Marina-
dc.contributor.authorSantra, Robin-
dc.date.accessioned2025-02-21T16:03:16Z-
dc.date.available2025-02-21T16:03:16Z-
dc.date.issued2024-03-11-
dc.identifier.issn2643-1564en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/17170-
dc.description.abstractIntense x-ray free-electron laser pulses can induce multiple sequences of one-photon ionization and accompanying decay processes in atoms, producing highly charged atomic ions. Considering individual quantum states during these processes provides more precise information about the x-ray multiphoton ionization dynamics than the common configuration-based approach. However, in such a state-resolved approach, extremely huge-sized rate-equation calculations are inevitable. Here we present a strategy that embeds machine-learning models into a framework for atomic state-resolved ionization dynamics calculations. Machine learning is employed for the required atomic transition parameters, whose calculations possess the computationally most expensive steps. We find for argon that both feedforward neural networks and random forest regressors can predict these parameters with acceptable, but limited accuracy. State-resolved ionization dynamics of argon, in terms of charge-state distributions and electron and photon spectra, are also presented. Comparing fully calculated and machine-learning-based results, we demonstrate that the proposed machine-learning strategy works in principle and that the performance, in terms of charge-state distributions and electron and photon spectra, is good. Our work establishes a first step toward accelerating the calculation of atomic state-resolved ionization dynamics induced by high-intensity x rays.en
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical review researchen_US
dc.subject.ddc530: Physiken_US
dc.titleX-ray-induced atomic transitions via machine learning : a computational investigationen
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85187542736en
dc.description.versionPeerRevieweden_US
tuhh.container.issue1en_US
tuhh.container.volume6en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1103/PhysRevResearch.6.013265-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid0000-0003-1623-5309en
dc.contributor.orcid0000-0002-1442-9815en
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60030635en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60030635en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60030635en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60030635en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60032697en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60030635en
dc.source.typearen
tuhh.container.articlenumber013265en
dc.funding.numberHIDSS-0002en
dc.funding.sponsorDeutsches Elektronen-Synchrotronen
dc.relation.acronymDESYen
local.comment.externalarticle number: 013265en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidBudewig, Laura-
item.creatorOrcidSon, Sang Kil-
item.creatorOrcidJurek, Zoltan-
item.creatorOrcidAbdullah, Malik Muhammad-
item.creatorOrcidTropmann-Frick, Marina-
item.creatorOrcidSantra, Robin-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.creatorGNDBudewig, Laura-
item.creatorGNDSon, Sang Kil-
item.creatorGNDJurek, Zoltan-
item.creatorGNDAbdullah, Malik Muhammad-
item.creatorGNDTropmann-Frick, Marina-
item.creatorGNDSantra, Robin-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0003-1623-5309-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

4
checked on Feb 22, 2025

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons