DC ElementWertSprache
dc.contributor.authorAziz, Vanya-
dc.contributor.authorWu, Ouyang-
dc.contributor.authorNowak, Ivo-
dc.contributor.authorHendrix, Eligius M.T.-
dc.contributor.authorKronqvist, Jan-
dc.date.accessioned2025-02-21T16:08:45Z-
dc.date.available2025-02-21T16:08:45Z-
dc.date.issued2024-02-22-
dc.identifier.issn1573-2878en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/17171-
dc.description.abstractIn recent years, an interest appeared in integrating various optimization algorithms in machine learning. We study the potential of ensemble learning in classification tasks and how to efficiently decompose the underlying optimization problem. Ensemble learning has become popular for machine learning applications and it is particularly interesting from an optimization perspective due to its resemblance to column generation. The challenge for learning is not only to obtain a good fit for the training data set, but also good generalization, such that the classifier is generally applicable. Deep networks have the drawback that they require a lot of computational effort to get to an accurate classification. Ensemble learning can combine various weak learners, which individually require less computational time. We consider binary classification problems studying a three-phase algorithm. After initializing a set of base learners refined by a bootstrapping approach, base learners are generated using the solution of an linear programming (LP) master problem and then solving a machine learning sub-problem regarding a reduced data set, which can be viewed as a so-called pricing problem. We theoretically show that the algorithm computes an optimal ensemble model in the convex hull of a given model space. The implementation of the algorithm is part of an ensemble learning framework called decolearn. Numerical experiments with CIFAR-10 data set show that the base learners are diverse and that both the training and generalization error are reduced after several iterations.en
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of optimization theory and applicationsen_US
dc.subjectColumn generationen_US
dc.subjectEnsembleen_US
dc.subjectLinear programmingen_US
dc.subjectMachine learningen_US
dc.subjectPricing problemen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleOn optimizing ensemble models using column generationen
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85185524503en
dc.description.versionPeerRevieweden_US
tuhh.container.endpage1819en_US
tuhh.container.startpage1794en_US
tuhh.container.volume203en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1007/s10957-024-02391-9-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.contributor.orcid0009-0003-1068-9729en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcityMalagaen
dc.contributor.departmentcityStockholmen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmentcountrySpainen
dc.contributor.departmentcountrySwedenen
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60032697en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60032697en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60032697en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60003662en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60002014en
dc.source.typearen
dc.funding.numberPID2021-123278OB-I00en
dc.funding.sponsorC3.ai Digital Transformation Instituteen
dc.relation.acronymC3DTIen
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidAziz, Vanya-
item.creatorOrcidWu, Ouyang-
item.creatorOrcidNowak, Ivo-
item.creatorOrcidHendrix, Eligius M.T.-
item.creatorOrcidKronqvist, Jan-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.creatorGNDAziz, Vanya-
item.creatorGNDWu, Ouyang-
item.creatorGNDNowak, Ivo-
item.creatorGNDHendrix, Eligius M.T.-
item.creatorGNDKronqvist, Jan-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

10
checked on 22.02.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons