Fulltext available Open Access
Title: Development of an optimised design of experiments methodology for the creation of surrogate models
Language: English
Authors: Sahlke, Max 
Keywords: Design of experiments; adaptive sampling; Luftfahrt; maschinelles Lernen; aviation; machine learning; surrogate model
Issue Date: 3-Apr-2025
Abstract: 
Diese Arbeit behandelt die Entwicklung einer optimierten statistischen Versuchsplanungs Methodik zur Erstellung von surrogate Modellen. Ziel dieser Methodik ist es die durchschnittliche Wertigkeit der mittels Simulationen erstellter Datenpunkte zu erhöhen. Dies führt dazu, dass Modelle der gleichen Güte mit weniger Datenpunkten erstellt werden können oder bessere Modelle mit der gleichen Datenmenge.

This report describes the development of an optimised design of experiment methodology for the creation of surrogate models. The goal of this method is to increase the average value of the simulated data samples. This yields to the possibility to generate models with the same quality with less data, or models with better quality with the same amount of data. Hence, there is the potential to save cost and time in many development processes while increasing the overall quality.
URI: https://hdl.handle.net/20.500.12738/17352
Institute: Fakultät Technik und Informatik 
Department Informations- und Elektrotechnik 
Type: Thesis
Thesis type: Master Thesis
Advisor: Dahlkemper, Jörg 
Referee: Garcia, Jasone Garay 
Appears in Collections:Theses

Files in This Item:
File Description SizeFormat
MA_Surrogate Models.pdf9.82 MBAdobe PDFView/Open
Show full item record

Page view(s)

16
checked on Apr 10, 2025

Download(s)

9
checked on Apr 10, 2025

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.