DC ElementWertSprache
dc.contributor.authorGerdes, Mike-
dc.contributor.authorGalar, Diego-
dc.contributor.authorScholz, Dieter-
dc.date.accessioned2020-08-26T09:19:19Z-
dc.date.available2020-08-26T09:19:19Z-
dc.date.issued2017-
dc.identifier.issn1507-2711en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/1766-
dc.description.abstractReliable sensors and information are required for reliable condition monitoring. Complex systems are commonly monitored by many sensors for health assessment and operation purposes. When one of the sensors fails, the current state of the system cannot be calculated in same reliable way or the information about the current state will not be complete. Condition monitoring can still be used with an incomplete state, but the results may not represent the true condition of the system. This is especially true if the failed sensor monitors an important system parameter. There are two possibilities to handle sensor failure. One is to make the monitoring more complex by enabling it to work better with incomplete data; the other is to introduce hard or software redundancy. Sensor reliability is a critical part of a system. Not all sensors can be made redundant because of space, cost or environmental constraints. Sensors delivering significant information about the system state need to be redundant, but an error of less important sensors is acceptable. This paper shows how to calculate the significance of the information that a sensor gives about a system by using signal processing and decision trees. It also shows how signal processing parameters influence the classification rate of a decision tree and, thus, the information. Decision trees are used to calculate and order the features based on the information gain of each feature. During the method validation, they are used for failure classification to show the influence of different features on the classification performance. The paper concludes by analysing the results of experiments showing how the method can classify different errors with a 75% probability and how different feature extraction options influence the information gain.en
dc.language.isoenen_US
dc.relation.ispartofEksploatacja i niezawodność = Maintenance and reliabilityen_US
dc.subjectdecision treesen_US
dc.subjectfeature extractionen_US
dc.subjectsensor optimizationen_US
dc.subjectsensor fusionen_US
dc.subjectsensor selectionen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleDecision Trees and the Effects of Feature Extraction Parameters for Robust Sensor Network Designen
dc.typeArticleen_US
tuhh.container.endpage42en_US
tuhh.container.issue1en_US
tuhh.container.startpage31en_US
tuhh.container.volume19en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Fahrzeugtechnik und Flugzeugbauen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteForschungsgruppe Flugzeugentwurf und -systeme (AERO)en_US
tuhh.publisher.doi10.17531/ein.2017.1.5-
tuhh.publisher.urlhttp://www.fzt.haw-hamburg.de/pers/Scholz/PAHMIR/GERDES-2017_DecisionTreesAndFeatureExtraction_MaintenanceAndReliability.pdf-
tuhh.publisher.urlhttp://PAHMIR.ProfScholz.de-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.creatorGNDGerdes, Mike-
item.creatorGNDGalar, Diego-
item.creatorGNDScholz, Dieter-
item.fulltextNo Fulltext-
item.creatorOrcidGerdes, Mike-
item.creatorOrcidGalar, Diego-
item.creatorOrcidScholz, Dieter-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypeArticle-
crisitem.author.deptDepartment Fahrzeugtechnik und Flugzeugbau-
crisitem.author.orcid0000-0002-8188-7269-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

38
checked on 27.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.