
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Clemen, Thomas | - |
dc.contributor.author | Baran, Ersan | - |
dc.date.accessioned | 2025-05-23T12:39:24Z | - |
dc.date.available | 2025-05-23T12:39:24Z | - |
dc.date.created | 2024-07-11 | - |
dc.date.issued | 2025-05-23 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12738/17683 | - |
dc.description.abstract | Infektionskrankheiten stellen eine anhaltende Bedrohung für die globale Gesundheit dar. Die COVID-19-Pandemie hat die Notwendigkeit präziser Simulationsmodelle verdeutlicht. Traditionelle epidemiologische Modelle stoßen jedoch an ihre Grenzen, wenn es darum geht, die Komplexität realer Ausbreitungsprozesse abzubilden. Diese Bachelorarbeit kombiniert die Stärken von Multi-Agenten-Systemen und neuronalen Netzen, um ein neuartiges Simulationsmodell zu entwickeln, das individuelle Verhaltensweisen, räumliche Heterogenität und dynamische Interaktionen berücksichtigt. Dieser innovative Ansatz verspricht realistischere performante Simulationen und somit eine bessere Unterstützung bei der Entwicklung effektiver Strategien zur Bekämpfung von Infektionskrankheiten. | de |
dc.description.abstract | Infectious diseases pose a persistent threat to global health. The COVID-19 pandemic has highlighted the need for accurate simulation models. However, traditional epidemiological models struggle to capture the complexity of real-world spreading processes. This bachelor thesis combines the strengths of multi-agent systems and neural networks to develop a novel simulation model that accounts for individual behaviors, spatial heterogeneity, and dynamic interactions. This innovative approach promises more realistic and performant simulations, thus providing better support for developing effective strategies to combat infectious diseases. | en |
dc.language.iso | de | en_US |
dc.subject | Simulation | en_US |
dc.subject | Tensoren | en_US |
dc.subject | Multi-Agenten-System | en_US |
dc.subject | Infektionskrankheit | en_US |
dc.subject | Neuronale Netze | en_US |
dc.subject | Backpropagation | en_US |
dc.subject | Differentialgleichung | en_US |
dc.subject | Transformer | en_US |
dc.subject | Tensors | en_US |
dc.subject | Multi-agent systems | en_US |
dc.subject | Infectious diseases | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Differential equation | en_US |
dc.subject.ddc | 004: Informatik | en_US |
dc.title | Tensorbasierte Agenten zur Ausbreitungssimulation von Infektionskrankheiten | de |
dc.type | Thesis | en_US |
openaire.rights | info:eu-repo/semantics/openAccess | en_US |
thesis.grantor.department | Fakultät Technik und Informatik | en_US |
thesis.grantor.department | Department Informatik | en_US |
thesis.grantor.universityOrInstitution | Hochschule für Angewandte Wissenschaften Hamburg | en_US |
tuhh.contributor.referee | May, Jürgen | - |
tuhh.identifier.urn | urn:nbn:de:gbv:18302-reposit-213149 | - |
tuhh.oai.show | true | en_US |
tuhh.publication.institute | Fakultät Technik und Informatik | en_US |
tuhh.publication.institute | Department Informatik | en_US |
tuhh.type.opus | Bachelor Thesis | - |
dc.type.casrai | Supervised Student Publication | - |
dc.type.dini | bachelorThesis | - |
dc.type.driver | bachelorThesis | - |
dc.type.status | info:eu-repo/semantics/publishedVersion | en_US |
dc.type.thesis | bachelorThesis | en_US |
dcterms.DCMIType | Text | - |
tuhh.dnb.status | domain | en_US |
item.fulltext | With Fulltext | - |
item.openairetype | Thesis | - |
item.creatorOrcid | Baran, Ersan | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_46ec | - |
item.advisorGND | Clemen, Thomas | - |
item.languageiso639-1 | de | - |
item.creatorGND | Baran, Ersan | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
BA_Tensorbasierte Agenten zur Ausbreitungssimulation von Infektionskrankheiten.pdf | 5.64 MB | Adobe PDF | View/Open |
Note about this record
Export
Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.