DC ElementWertSprache
dc.contributor.authorSheidaee, Ehsan-
dc.contributor.authorBazyar, Pourya-
dc.date.accessioned2025-07-25T10:56:55Z-
dc.date.available2025-07-25T10:56:55Z-
dc.date.issued2025-06-18-
dc.identifier.issn1805-9376en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/17914-
dc.description.abstractThe rapid growth of the food industry necessitates rigorous quality control, particularly in egg production. This study explores advanced methodologies for egg quality assessment by integrating the Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and k-Nearest Neighbour (KNN) with machine vision techniques. While traditional destructive methods like measuring the Haugh unit (HU) offer direct insights, but render eggs unusable, non-destructive techniques, such as imaging and spectroscopy, allow continuous quality monitoring. Over a 20-day period, egg samples were evaluated using a digital camera to capture key parameters like the albumen and yolk heights. The study’s image processing involved noise reduction, feature extraction, and calibration. The PCA captured 90.18% of the data variability, while LDA achieved 100% classification accuracy, and KNN demonstrated 80% accuracy. These findings underscore the effectiveness of combining machine vision with statistical methods to enhance the egg grading accuracy, contributing to consumer safety and industry standards.en
dc.language.isoenen_US
dc.publisherČeska Akademie Zemědělských Věden_US
dc.relation.ispartofResearch in agricultural engineeringen_US
dc.subjectalbumin heighten_US
dc.subjectclassificationen_US
dc.subjecthaugh uniten_US
dc.subjectimage processingen_US
dc.subjectquality controlen_US
dc.subject.ddc600: Techniken_US
dc.titleEnhancing the destructive egg quality assessment using the machine vision and feature extraction techniqueen
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-105008449366en
dc.description.versionPeerRevieweden_US
tuhh.container.endpage104en_US
tuhh.container.issue2en_US
tuhh.container.startpage95en_US
tuhh.container.volume71en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.17221/86/2024-RAE-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.contributor.departmentcityTehranen
dc.contributor.departmentcityHamburgen
dc.contributor.departmentcountryIranen
dc.contributor.departmentcountryGermanyen
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60032053en
dc.contributor.departmenturlhttps://api.elsevier.com/content/affiliation/affiliation_id/60032697en
dc.source.typearen
item.languageiso639-1en-
item.creatorGNDSheidaee, Ehsan-
item.creatorGNDBazyar, Pourya-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.creatorOrcidSheidaee, Ehsan-
item.creatorOrcidBazyar, Pourya-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

16
checked on 10.08.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons