DC FieldValueLanguage
dc.contributor.authorAyoub, Ibrahim-
dc.contributor.authorLenders, Martine S.-
dc.contributor.authorAmpeau, Benoît-
dc.contributor.authorBalakrichenan, Sandoche-
dc.contributor.authorKhawam, Kinda-
dc.contributor.authorSchmidt, Thomas C.-
dc.contributor.authorWählisch, Matthias-
dc.date.accessioned2025-07-30T13:09:32Z-
dc.date.available2025-07-30T13:09:32Z-
dc.date.issued2025-04-16-
dc.identifier.issn2169-3536en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/17932-
dc.description.abstractIn this paper, we study Internet of Things (IoT) domain names, the domain names of backend servers on the Internet that are accessed by IoT devices. We investigate how they compare to non-IoT domain names based on their statistical and DNS properties and the feasibility of classifying these two classes of domain names using machine learning (ML). We construct a dataset of IoT domain names by surveying past studies that used testbeds with real IoT devices. For the non-IoT dataset, we use two lists of top-visited websites. We study the statistical and DNS properties of the domain names. We also leverage machine learning and train six models to perform the classification between the two classes of domain names. The word embedding technique we use to get the real-valued vector representation of the domain names is Word2vec. Our statistical analysis highlights significant differences in domain name length, label frequency, and compliance with typical domain name construction guidelines, while our DNS analysis reveals notable variations in resource record availability and configuration between IoT and non-IoT DNS zones. As for classifying IoT and non-IoT domain names using machine learning, Random Forest achieves the highest performance among the models we train, yielding the highest accuracy, precision, recall, and F<inf>1</inf> score. Our work offers novel insights to IoT, potentially informing protocol design and aiding in network security and performance monitoring.en
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE accessen_US
dc.subjectDomain namesen_US
dc.subjectIoTen_US
dc.subjectmachine learningen_US
dc.subjectsecurityen_US
dc.subject.ddc004: Informatiken_US
dc.titleToward a better understanding of IoT domain names : a study of IoT backenden
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-105003815605en
dc.description.versionPeerRevieweden_US
tuhh.container.endpage68890en_US
tuhh.container.startpage68871en_US
tuhh.container.volume13en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1109/ACCESS.2025.3561521-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.source.typearen
dc.funding.numberANR-20-CYAL-0002en
dc.funding.sponsorAgence Nationale de la Rechercheen
dc.relation.acronymANRen
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.creatorGNDAyoub, Ibrahim-
item.creatorGNDLenders, Martine S.-
item.creatorGNDAmpeau, Benoît-
item.creatorGNDBalakrichenan, Sandoche-
item.creatorGNDKhawam, Kinda-
item.creatorGNDSchmidt, Thomas C.-
item.creatorGNDWählisch, Matthias-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidAyoub, Ibrahim-
item.creatorOrcidLenders, Martine S.-
item.creatorOrcidAmpeau, Benoît-
item.creatorOrcidBalakrichenan, Sandoche-
item.creatorOrcidKhawam, Kinda-
item.creatorOrcidSchmidt, Thomas C.-
item.creatorOrcidWählisch, Matthias-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0002-0956-7885-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

8
checked on Aug 10, 2025

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons