DC ElementWertSprache
dc.contributor.authorPareigis, Stephan-
dc.contributor.authorRiege, Daniel Leonid-
dc.contributor.authorTiedemann, Tim-
dc.date.accessioned2025-08-07T07:54:41Z-
dc.date.available2025-08-07T07:54:41Z-
dc.date.issued2025-
dc.identifier.isbn978-989-758-717-7en_US
dc.identifier.issn2184-2809en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/17975-
dc.description.abstractAn experimental setup and preliminary validation of a platform for sim-to-real transfer in reinforcement learn ing for autonomous driving is presented. The platform features a 1:87 scale miniature autonomous vehicle, the tinycar, within a detailed miniature world that includes urban and rural settings. Key components include a simulation for training machine learning models, a digital twin with a tracking system using overhead cameras, an automatic repositioning mechanism of the miniature vehicle to reduce hu man intervention when training in the real-world, and an encoder based approach for reducing the state space dimension for the machine learning algorithms. The tinycar is equipped with a steering servo, DC motor, front-facing camera, and a custom PCB with an ESP32 micro-controller. A custom UDP-based network protocol enables real-time communication. The machine learning setup uses semantically segmented lanes of the streets as an input. These colored lanes can be directly produced by the simulation. In the real-world a machine learning based segmentation method is used to achieve the segmented lanes. Twomethodsare used to train a controller (actor): Imitation learning as a supervised learning method in which a Stanley controller serves as a teacher. Secondly, Twin Delayed Deep Deterministic Policy Gradient (TD3) is used to minimize the Cross-Track Error (CTE) of the miniature vehicle with respect to its lateral position in the street. Both methods are applied equally in simulation and in the real-world and are compared. Preliminary results show high accuracy in lane following and intersection navigation in simulation and real world, supported by precise real-time feedback from the tracking system. While full integration of the RL model is ongoing, the presented results show the platform’s potential to further investigate the sim-to-real as pects in autonomous driving.en
dc.language.isoenen_US
dc.publisherScitePressen_US
dc.subjectAutonomous Drivingen_US
dc.subjectDigital Twinen_US
dc.subjectMiniature Autonomyen_US
dc.subjectReal-World Reinforcement Learningen_US
dc.subjectReinforcement Learningen_US
dc.subjectSim-to-Real Gapen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleMiniature autonomous vehicle environment for sim-to-real transfer in reinforcement learningen
dc.typeinProceedingsen_US
dc.relation.conferenceInternational Conference on Informatics in Control, Automation and Robotics 2024en_US
dc.identifier.scopus2-s2.0-105001300488en
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorGini, Giuseppina-
local.contributorPerson.editorPrecup, Radu-Emil-
local.contributorPerson.editorFilev, Dimitar-
tuhh.container.endpage317en_US
tuhh.container.startpage309en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.5220/0012944400003822-
tuhh.publisher.urlhttps://www.scitepress.org/Papers/2024/129444/129444.pdf-
tuhh.relation.ispartofseriesProceedings of the International Conference on Informatics in Control Automation and Roboticsen_US
tuhh.relation.ispartofseriesnumber1en_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.source.typecpen
tuhh.book.titleProceedings of the 21st International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, 2024 , Porto, Portugal-
item.tuhhseriesidProceedings of the International Conference on Informatics in Control Automation and Robotics-
item.languageiso639-1en-
item.creatorGNDPareigis, Stephan-
item.creatorGNDRiege, Daniel Leonid-
item.creatorGNDTiedemann, Tim-
item.seriesrefProceedings of the International Conference on Informatics in Control Automation and Robotics;1-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.creatorOrcidPareigis, Stephan-
item.creatorOrcidRiege, Daniel Leonid-
item.creatorOrcidTiedemann, Tim-
item.openairetypeinProceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0002-7238-0976-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

16
checked on 10.08.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons