DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pareigis, Stephan | - |
dc.contributor.author | Riege, Daniel Leonid | - |
dc.contributor.author | Tiedemann, Tim | - |
dc.date.accessioned | 2025-08-07T07:54:41Z | - |
dc.date.available | 2025-08-07T07:54:41Z | - |
dc.date.issued | 2025 | - |
dc.identifier.isbn | 978-989-758-717-7 | en_US |
dc.identifier.issn | 2184-2809 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12738/17975 | - |
dc.description.abstract | An experimental setup and preliminary validation of a platform for sim-to-real transfer in reinforcement learn ing for autonomous driving is presented. The platform features a 1:87 scale miniature autonomous vehicle, the tinycar, within a detailed miniature world that includes urban and rural settings. Key components include a simulation for training machine learning models, a digital twin with a tracking system using overhead cameras, an automatic repositioning mechanism of the miniature vehicle to reduce hu man intervention when training in the real-world, and an encoder based approach for reducing the state space dimension for the machine learning algorithms. The tinycar is equipped with a steering servo, DC motor, front-facing camera, and a custom PCB with an ESP32 micro-controller. A custom UDP-based network protocol enables real-time communication. The machine learning setup uses semantically segmented lanes of the streets as an input. These colored lanes can be directly produced by the simulation. In the real-world a machine learning based segmentation method is used to achieve the segmented lanes. Twomethodsare used to train a controller (actor): Imitation learning as a supervised learning method in which a Stanley controller serves as a teacher. Secondly, Twin Delayed Deep Deterministic Policy Gradient (TD3) is used to minimize the Cross-Track Error (CTE) of the miniature vehicle with respect to its lateral position in the street. Both methods are applied equally in simulation and in the real-world and are compared. Preliminary results show high accuracy in lane following and intersection navigation in simulation and real world, supported by precise real-time feedback from the tracking system. While full integration of the RL model is ongoing, the presented results show the platform’s potential to further investigate the sim-to-real as pects in autonomous driving. | en |
dc.language.iso | en | en_US |
dc.publisher | ScitePress | en_US |
dc.subject | Autonomous Driving | en_US |
dc.subject | Digital Twin | en_US |
dc.subject | Miniature Autonomy | en_US |
dc.subject | Real-World Reinforcement Learning | en_US |
dc.subject | Reinforcement Learning | en_US |
dc.subject | Sim-to-Real Gap | en_US |
dc.subject.ddc | 620: Ingenieurwissenschaften | en_US |
dc.title | Miniature autonomous vehicle environment for sim-to-real transfer in reinforcement learning | en |
dc.type | inProceedings | en_US |
dc.relation.conference | International Conference on Informatics in Control, Automation and Robotics 2024 | en_US |
dc.identifier.scopus | 2-s2.0-105001300488 | en |
dc.description.version | PeerReviewed | en_US |
local.contributorPerson.editor | Gini, Giuseppina | - |
local.contributorPerson.editor | Precup, Radu-Emil | - |
local.contributorPerson.editor | Filev, Dimitar | - |
tuhh.container.endpage | 317 | en_US |
tuhh.container.startpage | 309 | en_US |
tuhh.oai.show | true | en_US |
tuhh.publication.institute | Department Informatik | en_US |
tuhh.publication.institute | Fakultät Technik und Informatik | en_US |
tuhh.publisher.doi | 10.5220/0012944400003822 | - |
tuhh.publisher.url | https://www.scitepress.org/Papers/2024/129444/129444.pdf | - |
tuhh.relation.ispartofseries | Proceedings of the International Conference on Informatics in Control Automation and Robotics | en_US |
tuhh.relation.ispartofseriesnumber | 1 | en_US |
tuhh.type.opus | InProceedings (Aufsatz / Paper einer Konferenz etc.) | - |
dc.rights.cc | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.type.casrai | Conference Paper | - |
dc.type.dini | contributionToPeriodical | - |
dc.type.driver | contributionToPeriodical | - |
dc.type.status | info:eu-repo/semantics/publishedVersion | en_US |
dcterms.DCMIType | Text | - |
dc.source.type | cp | en |
tuhh.book.title | Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, 2024 , Porto, Portugal | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.creatorGND | Pareigis, Stephan | - |
item.creatorGND | Riege, Daniel Leonid | - |
item.creatorGND | Tiedemann, Tim | - |
item.openairetype | inProceedings | - |
item.openairecristype | http://purl.org/coar/resource_type/c_5794 | - |
item.creatorOrcid | Pareigis, Stephan | - |
item.creatorOrcid | Riege, Daniel Leonid | - |
item.creatorOrcid | Tiedemann, Tim | - |
item.tuhhseriesid | Proceedings of the International Conference on Informatics in Control Automation and Robotics | - |
item.seriesref | Proceedings of the International Conference on Informatics in Control Automation and Robotics;1 | - |
crisitem.author.dept | Department Informatik | - |
crisitem.author.dept | Department Informatik | - |
crisitem.author.orcid | 0000-0002-7238-0976 | - |
crisitem.author.parentorg | Fakultät Technik und Informatik | - |
crisitem.author.parentorg | Fakultät Technik und Informatik | - |
Appears in Collections: | Publications without full text |
Add Files to Item
Note about this record
Export
This item is licensed under a Creative Commons License