DC FieldValueLanguage
dc.contributor.authorPareigis, Stephan-
dc.contributor.authorRiege, Daniel Leonid-
dc.contributor.authorTiedemann, Tim-
dc.date.accessioned2025-08-07T07:54:41Z-
dc.date.available2025-08-07T07:54:41Z-
dc.date.issued2025-
dc.identifier.isbn978-989-758-717-7en_US
dc.identifier.issn2184-2809en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/17975-
dc.description.abstractAn experimental setup and preliminary validation of a platform for sim-to-real transfer in reinforcement learn ing for autonomous driving is presented. The platform features a 1:87 scale miniature autonomous vehicle, the tinycar, within a detailed miniature world that includes urban and rural settings. Key components include a simulation for training machine learning models, a digital twin with a tracking system using overhead cameras, an automatic repositioning mechanism of the miniature vehicle to reduce hu man intervention when training in the real-world, and an encoder based approach for reducing the state space dimension for the machine learning algorithms. The tinycar is equipped with a steering servo, DC motor, front-facing camera, and a custom PCB with an ESP32 micro-controller. A custom UDP-based network protocol enables real-time communication. The machine learning setup uses semantically segmented lanes of the streets as an input. These colored lanes can be directly produced by the simulation. In the real-world a machine learning based segmentation method is used to achieve the segmented lanes. Twomethodsare used to train a controller (actor): Imitation learning as a supervised learning method in which a Stanley controller serves as a teacher. Secondly, Twin Delayed Deep Deterministic Policy Gradient (TD3) is used to minimize the Cross-Track Error (CTE) of the miniature vehicle with respect to its lateral position in the street. Both methods are applied equally in simulation and in the real-world and are compared. Preliminary results show high accuracy in lane following and intersection navigation in simulation and real world, supported by precise real-time feedback from the tracking system. While full integration of the RL model is ongoing, the presented results show the platform’s potential to further investigate the sim-to-real as pects in autonomous driving.en
dc.language.isoenen_US
dc.publisherScitePressen_US
dc.subjectAutonomous Drivingen_US
dc.subjectDigital Twinen_US
dc.subjectMiniature Autonomyen_US
dc.subjectReal-World Reinforcement Learningen_US
dc.subjectReinforcement Learningen_US
dc.subjectSim-to-Real Gapen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleMiniature autonomous vehicle environment for sim-to-real transfer in reinforcement learningen
dc.typeinProceedingsen_US
dc.relation.conferenceInternational Conference on Informatics in Control, Automation and Robotics 2024en_US
dc.identifier.scopus2-s2.0-105001300488en
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorGini, Giuseppina-
local.contributorPerson.editorPrecup, Radu-Emil-
local.contributorPerson.editorFilev, Dimitar-
tuhh.container.endpage317en_US
tuhh.container.startpage309en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.5220/0012944400003822-
tuhh.publisher.urlhttps://www.scitepress.org/Papers/2024/129444/129444.pdf-
tuhh.relation.ispartofseriesProceedings of the International Conference on Informatics in Control Automation and Roboticsen_US
tuhh.relation.ispartofseriesnumber1en_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.source.typecpen
tuhh.book.titleProceedings of the 21st International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, 2024 , Porto, Portugal-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.creatorGNDPareigis, Stephan-
item.creatorGNDRiege, Daniel Leonid-
item.creatorGNDTiedemann, Tim-
item.openairetypeinProceedings-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidPareigis, Stephan-
item.creatorOrcidRiege, Daniel Leonid-
item.creatorOrcidTiedemann, Tim-
item.tuhhseriesidProceedings of the International Conference on Informatics in Control Automation and Robotics-
item.seriesrefProceedings of the International Conference on Informatics in Control Automation and Robotics;1-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0002-7238-0976-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

16
checked on Aug 10, 2025

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons