Verlagslink DOI: 10.1016/j.comnet.2024.110855
Titel: Network anomaly detection in cars : a case for time-sensitive stream filtering and policing
Sprache: Englisch
Autorenschaft: Meyer, Philipp  
Häckel, Timo  
Reider, Sandra 
Korf, Franz 
Schmidt, Thomas C.  
Schlagwörter: Automotive security; In-vehicular networks; Network simulation; QoS; Time-sensitive networking; TSN
Erscheinungsdatum: 21-Okt-2024
Verlag: Elsevier
Zeitschrift oder Schriftenreihe: Computer networks : the international journal of computer and telecommunications networking 
Zeitschriftenband: 255
Zusammenfassung: 
Connected vehicles are threatened by cyber-attacks as in-vehicle networks technologically approach (mobile) LANs with several wireless interconnects to the outside world. Malware that infiltrates a car today faces potential victims of constrained, barely shielded Electronic Control Units (ECUs). Many ECUs perform critical driving functions, which stresses the need for hardening security and resilience of in-vehicle networks in a multifaceted way. Future vehicles will comprise Ethernet backbones that differentiate services via Time-Sensitive Networking (TSN). The well-known vehicular control flows will follow predefined schedules and TSN traffic classifications. In this paper, we exploit this traffic classification to build a network anomaly detection system. We show how filters and policies of TSN can identify misbehaving traffic and thereby serve as distributed guards on the data link layer. On this lowest possible layer, our approach derives a highly efficient network protection directly from TSN. We classify link layer anomalies and micro-benchmark the detection accuracy in each class. Based on a topology derived from a real-world car and its traffic definitions we evaluate the detection system in realistic macro-benchmarks based on recorded attack traces. Our results show that the detection accuracy depends on how exact the specifications of in-vehicle communication are configured. Most notably for a fully specified communication matrix, our anomaly detection remains free of false-positive alarms, which is a significant benefit for implementing automated countermeasures in future vehicles.
URI: https://hdl.handle.net/20.500.12738/18095
ISSN: 1872-7069
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Zeitschriftenbeitrag
Hinweise zur Quelle: article number: 110855
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons