DC FieldValueLanguage
dc.contributor.authorBurmester, Moritz-
dc.contributor.authorKhisraw, Abdullah-
dc.contributor.authorDalhoff, Peter-
dc.date.accessioned2025-09-19T07:47:13Z-
dc.date.available2025-09-19T07:47:13Z-
dc.date.issued2025-07-27-
dc.identifier.issn1099-1824en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/18190-
dc.description.abstractConventional methods for manufacturing rotor blades, such as composite construction and die casting, are hindered by high costs due to expensive molds, while 3D printing often results in poor quality or high production costs with unfavorable cost-per-part scaling. Moreover, conventional airfoil designs perform poorly at Reynolds numbers below 100,000, necessitating larger rotors. This becomes especially problematic in wind tunnel studies, where multiple rotors must fit within a single wind tunnel for wake or multirotor research, significantly increasing both building costs and wind tunnel requirements. To address these challenges, this study develops high-performance rotor blades for micro wind turbines that are aerodynamically efficient under low Reynolds number conditions and easy to manufacture. Using cambered plate airfoils, the optimization process employed a class shape transformation and seventh-degree Bernstein polynomials. Aerodynamic performance was analyzed using XFOIL, with evaluations conducted at Reynolds numbers of 30,000, 40,000, and 50,000 to ensure robust performance across realistic operating scenarios. The iterative optimization employed both single-objective and (genetic) multi-objective algorithms, targeting both aerodynamic efficiency and manufacturability. The blade tested with the optimized MB-LR2-7.5 airfoil exhibited good performance in wind tunnel tests, closely matching Blade Element Momentum (BEM) simulations. This research highlights the potential of cambered plate airfoils to improve micro wind turbine performance while maintaining ease of manufacturing, with potential applications in unmanned aerial vehicles (UAVs), drone propellers, and ventilation systems. The findings advance the understanding of aerodynamic optimization in low Reynolds number environments, paving the way for more efficient and cost-effective rotor designs.en
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofWind energyen_US
dc.subjectBernstein polynomialsen_US
dc.subjectcambered plate airfoilsen_US
dc.subjectlow Reynolds numbersen_US
dc.subjectmulti-objective optimization and genetic algorithmsen_US
dc.subjectrotor blade and airfoil optimizationen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleDesigning high-performance, manufacturing-friendly rotor blades for micro wind turbines via cambered plate airfoil optimizationen
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-105011871546en
dc.description.versionPeerRevieweden_US
tuhh.container.issue9en_US
tuhh.container.volume28en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteCompetence Center Erneuerbare Energien und Energieeffizienzen_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1002/we.70046-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.source.typearen
tuhh.container.articlenumbere70046en
local.comment.externalarticle number: e70046en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.creatorGNDBurmester, Moritz-
item.creatorGNDKhisraw, Abdullah-
item.creatorGNDDalhoff, Peter-
item.creatorOrcidBurmester, Moritz-
item.creatorOrcidKhisraw, Abdullah-
item.creatorOrcidDalhoff, Peter-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptCompetence Center für Energiewende-
crisitem.author.deptCompetence Center für Energiewende-
crisitem.author.deptDepartment Maschinenbau und Produktion (ehemalig, aufgelöst 10.2025)-
crisitem.author.parentorgPräsidium-
crisitem.author.parentorgPräsidium-
crisitem.author.parentorgFakultät Technik und Informatik (ehemalig, aufgelöst 10.2025)-
Appears in Collections:Publications without full text
Show simple item record

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons